Investigating the Existence Results for Hilfer Fractional Stochastic Evolution Inclusions of Order $$1<{\mu }<2$$

IF 1.9 3区 数学 Q1 MATHEMATICS
J. Pradeesh, V. Vijayakumar
{"title":"Investigating the Existence Results for Hilfer Fractional Stochastic Evolution Inclusions of Order $$1<{\\mu }<2$$","authors":"J. Pradeesh, V. Vijayakumar","doi":"10.1007/s12346-023-00899-5","DOIUrl":null,"url":null,"abstract":"<p>The objective of this article is to investigate the issue of existence results for Hilfer fractional stochastic differential inclusions of order <span>\\(1&lt;\\mu &lt;2\\)</span> in Hilbert spaces. Our discussion is based on fractional calculus, multivalued analysis, sine and cosine operators, and Bohnenblust–Karlin’s fixed point theorem. At first, we investigate the existence of a mild solution for the Hilfer fractional stochastic differential system of order <span>\\(1&lt;\\mu &lt;2\\)</span>. After that, we developed our system with Sobolev-type, and we provided the existence results of a mild solution for the considered system. Then, the ideas of nonlocal conditions are applied in the Sobolev-type Hilfer fractional stochastic system. Finally, an example is offered in order to illustrate the effectiveness of the main theory.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"107 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00899-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this article is to investigate the issue of existence results for Hilfer fractional stochastic differential inclusions of order \(1<\mu <2\) in Hilbert spaces. Our discussion is based on fractional calculus, multivalued analysis, sine and cosine operators, and Bohnenblust–Karlin’s fixed point theorem. At first, we investigate the existence of a mild solution for the Hilfer fractional stochastic differential system of order \(1<\mu <2\). After that, we developed our system with Sobolev-type, and we provided the existence results of a mild solution for the considered system. Then, the ideas of nonlocal conditions are applied in the Sobolev-type Hilfer fractional stochastic system. Finally, an example is offered in order to illustrate the effectiveness of the main theory.

阶阶Hilfer分数阶随机进化内含的存在性结果研究 $$1<{\mu }<2$$
本文的目的是研究Hilbert空间中阶为\(1<\mu <2\)的Hilfer分数阶随机微分包含的存在性结果问题。我们的讨论是基于分数微积分,多值分析,正弦和余弦算子,和Bohnenblust-Karlin的不动点定理。首先,我们研究了阶为\(1<\mu <2\)的Hilfer分数阶随机微分系统的一个温和解的存在性。在此基础上,用sobolev型进行了系统的开发,并给出了所考虑系统的一个温和解的存在性结果。然后,将非局部条件的思想应用于sobolev型Hilfer分数阶随机系统。最后,通过实例说明了主要理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信