Positive Solutions of Indefinite Semipositone Elliptic Problems

IF 1.9 3区 数学 Q1 MATHEMATICS
Ruyun Ma, Yali Zhang, Yan Zhu
{"title":"Positive Solutions of Indefinite Semipositone Elliptic Problems","authors":"Ruyun Ma, Yali Zhang, Yan Zhu","doi":"10.1007/s12346-023-00901-0","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the parametrized family of problems </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned} \\begin{array}{ll} {\\mathcal {L}} u=\\lambda a(x)(f(u)-l),\\ \\ \\ \\ \\ &amp;{}x\\in \\Omega ,\\\\ u=0, \\ \\ \\ \\ {} &amp;{}x\\in \\partial \\Omega ,\\\\ \\end{array} \\end{aligned} \\right. \\end{aligned}$$</span>(P)<p>where <span>\\(\\Omega \\)</span> is a bounded domain of <span>\\({\\mathbb {R}}^N~(N\\ge 3)\\)</span> with regular boundary <span>\\(\\partial \\Omega ,~{\\mathcal {L}}\\)</span> is a general second-order uniformly elliptic operator, <span>\\(\\lambda ,~l&gt;0\\)</span>, <span>\\(a:{\\overline{\\Omega }}\\rightarrow {\\mathbb {R}}\\)</span> is a continuous function which may change sign, <span>\\(f:{\\mathbb {R}}^+\\rightarrow {\\mathbb {R}}\\)</span> is subcritical and superlinear at infinity. Under some suitable conditions, we obtain there exists <span>\\(\\lambda _0 &gt; 0\\)</span> such that <i>(P)</i> has positive solutions for all <span>\\(0 &lt; \\lambda \\le \\lambda _0 \\)</span> by topological degree argument and a priori estimates. In doing so, we require <i>f</i> to be of regular variation at infinity.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"52 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00901-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the parametrized family of problems

$$\begin{aligned} \left\{ \begin{aligned} \begin{array}{ll} {\mathcal {L}} u=\lambda a(x)(f(u)-l),\ \ \ \ \ &{}x\in \Omega ,\\ u=0, \ \ \ \ {} &{}x\in \partial \Omega ,\\ \end{array} \end{aligned} \right. \end{aligned}$$(P)

where \(\Omega \) is a bounded domain of \({\mathbb {R}}^N~(N\ge 3)\) with regular boundary \(\partial \Omega ,~{\mathcal {L}}\) is a general second-order uniformly elliptic operator, \(\lambda ,~l>0\), \(a:{\overline{\Omega }}\rightarrow {\mathbb {R}}\) is a continuous function which may change sign, \(f:{\mathbb {R}}^+\rightarrow {\mathbb {R}}\) is subcritical and superlinear at infinity. Under some suitable conditions, we obtain there exists \(\lambda _0 > 0\) such that (P) has positive solutions for all \(0 < \lambda \le \lambda _0 \) by topological degree argument and a priori estimates. In doing so, we require f to be of regular variation at infinity.

不定半正子椭圆问题的正解
研究了一类参数化族问题$$\begin{aligned} \left\{ \begin{aligned} \begin{array}{ll} {\mathcal {L}} u=\lambda a(x)(f(u)-l),\ \ \ \ \ &{}x\in \Omega ,\\ u=0, \ \ \ \ {} &{}x\in \partial \Omega ,\\ \end{array} \end{aligned} \right. \end{aligned}$$ (P),其中\(\Omega \)是具有正则边界的\({\mathbb {R}}^N~(N\ge 3)\)的有界域\(\partial \Omega ,~{\mathcal {L}}\)是一般二阶一致椭圆算子\(\lambda ,~l>0\), \(a:{\overline{\Omega }}\rightarrow {\mathbb {R}}\)是一个可以变号的连续函数\(f:{\mathbb {R}}^+\rightarrow {\mathbb {R}}\)在无穷远处是次临界和超线性的。在适当的条件下,通过拓扑度论证和先验估计,得到(P)存在\(\lambda _0 > 0\)使得(P)对所有\(0 < \lambda \le \lambda _0 \)都有正解。这样做,我们要求f在无穷远处有规则变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信