Kazem Adavi, Danial Tahery, Mohammad Khajouei, Mohammad Latifi
{"title":"High local supersaturation formation for precipitated calcium carbonate synthesis by applying a rotating disk reactor","authors":"Kazem Adavi, Danial Tahery, Mohammad Khajouei, Mohammad Latifi","doi":"10.1007/s43153-023-00423-x","DOIUrl":null,"url":null,"abstract":"<p>A spinning disk reactor (SDR) was applied and tested successfully for precipitated calcium carbonate particles synthesis in liquid–liquid system which is poorly understood in literature. The proposed SDR reactor consists of a spinning disk rotating at 4000–16,000 rpm. The proposed SDR resulted in a high local supersaturation ratio due to the intense energy dissipation produced by a high-speed spinning disk. The higher rotational speed of SDR produces calcium carbonate nanoparticles with smaller mean particle sizes and higher aragonite content. At the rotating speed of 15,000 rpm, precipitated calcium carbonate nanoparticles with a size of around 975 nm were produced. In addition, aragonite content increased from 10 to 95 wt% by increasing disk speed from 4000 to 15,000 rpm.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-023-00423-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A spinning disk reactor (SDR) was applied and tested successfully for precipitated calcium carbonate particles synthesis in liquid–liquid system which is poorly understood in literature. The proposed SDR reactor consists of a spinning disk rotating at 4000–16,000 rpm. The proposed SDR resulted in a high local supersaturation ratio due to the intense energy dissipation produced by a high-speed spinning disk. The higher rotational speed of SDR produces calcium carbonate nanoparticles with smaller mean particle sizes and higher aragonite content. At the rotating speed of 15,000 rpm, precipitated calcium carbonate nanoparticles with a size of around 975 nm were produced. In addition, aragonite content increased from 10 to 95 wt% by increasing disk speed from 4000 to 15,000 rpm.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.