Alexander V. Mantzaris, Douglas Chiodini, Kyle Ricketson
{"title":"Utilizing the simple graph convolutional neural network as a model for simulating influence spread in networks","authors":"Alexander V. Mantzaris, Douglas Chiodini, Kyle Ricketson","doi":"10.1186/s40649-021-00095-y","DOIUrl":null,"url":null,"abstract":"The ability for people and organizations to connect in the digital age has allowed the growth of networks that cover an increasing proportion of human interactions. The research community investigating networks asks a range of questions such as which participants are most central, and which community label to apply to each member. This paper deals with the question on how to label nodes based on the features (attributes) they contain, and then how to model the changes in the label assignments based on the influence they produce and receive in their networked neighborhood. The methodological approach applies the simple graph convolutional neural network in a novel setting. Primarily that it can be used not only for label classification, but also for modeling the spread of the influence of nodes in the neighborhoods based on the length of the walks considered. This is done by noticing a common feature in the formulations in methods that describe information diffusion which rely upon adjacency matrix powers and that of graph neural networks. Examples are provided to demonstrate the ability for this model to aggregate feature information from nodes based on a parameter regulating the range of node influence which can simulate a process of exchanges in a manner which bypasses computationally intensive stochastic simulations.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"48 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-021-00095-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
The ability for people and organizations to connect in the digital age has allowed the growth of networks that cover an increasing proportion of human interactions. The research community investigating networks asks a range of questions such as which participants are most central, and which community label to apply to each member. This paper deals with the question on how to label nodes based on the features (attributes) they contain, and then how to model the changes in the label assignments based on the influence they produce and receive in their networked neighborhood. The methodological approach applies the simple graph convolutional neural network in a novel setting. Primarily that it can be used not only for label classification, but also for modeling the spread of the influence of nodes in the neighborhoods based on the length of the walks considered. This is done by noticing a common feature in the formulations in methods that describe information diffusion which rely upon adjacency matrix powers and that of graph neural networks. Examples are provided to demonstrate the ability for this model to aggregate feature information from nodes based on a parameter regulating the range of node influence which can simulate a process of exchanges in a manner which bypasses computationally intensive stochastic simulations.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.