{"title":"On asymptotic convergence rate of random search","authors":"Dawid Tarłowski","doi":"10.1007/s10898-023-01342-4","DOIUrl":null,"url":null,"abstract":"<p>This paper presents general theoretical studies on asymptotic convergence rate (ACR) for finite dimensional optimization. Given the continuous problem function and discrete time stochastic optimization process, the ACR is the optimal constant for control of the asymptotic behaviour of the expected approximation errors. Under general assumptions, condition ACR<span>\\(<1\\)</span> implies the linear behaviour of the expected time of hitting the <span>\\(\\varepsilon \\)</span>- optimal sublevel set with <span>\\(\\varepsilon \\rightarrow 0^+ \\)</span> and determines the upper bound for the convergence rate of the trajectories of the process. This paper provides general characterization of ACR and, in particular, shows that some algorithms cannot converge linearly fast for any nontrivial continuous optimization problem. The relation between asymptotic convergence rate in the objective space and asymptotic convergence rate in the search space is provided. Examples and numerical simulations with use of a (1+1) self-adaptive evolution strategy and other algorithms are presented.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01342-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents general theoretical studies on asymptotic convergence rate (ACR) for finite dimensional optimization. Given the continuous problem function and discrete time stochastic optimization process, the ACR is the optimal constant for control of the asymptotic behaviour of the expected approximation errors. Under general assumptions, condition ACR\(<1\) implies the linear behaviour of the expected time of hitting the \(\varepsilon \)- optimal sublevel set with \(\varepsilon \rightarrow 0^+ \) and determines the upper bound for the convergence rate of the trajectories of the process. This paper provides general characterization of ACR and, in particular, shows that some algorithms cannot converge linearly fast for any nontrivial continuous optimization problem. The relation between asymptotic convergence rate in the objective space and asymptotic convergence rate in the search space is provided. Examples and numerical simulations with use of a (1+1) self-adaptive evolution strategy and other algorithms are presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.