{"title":"On asymptotic convergence rate of random search","authors":"Dawid Tarłowski","doi":"10.1007/s10898-023-01342-4","DOIUrl":null,"url":null,"abstract":"<p>This paper presents general theoretical studies on asymptotic convergence rate (ACR) for finite dimensional optimization. Given the continuous problem function and discrete time stochastic optimization process, the ACR is the optimal constant for control of the asymptotic behaviour of the expected approximation errors. Under general assumptions, condition ACR<span>\\(<1\\)</span> implies the linear behaviour of the expected time of hitting the <span>\\(\\varepsilon \\)</span>- optimal sublevel set with <span>\\(\\varepsilon \\rightarrow 0^+ \\)</span> and determines the upper bound for the convergence rate of the trajectories of the process. This paper provides general characterization of ACR and, in particular, shows that some algorithms cannot converge linearly fast for any nontrivial continuous optimization problem. The relation between asymptotic convergence rate in the objective space and asymptotic convergence rate in the search space is provided. Examples and numerical simulations with use of a (1+1) self-adaptive evolution strategy and other algorithms are presented.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"73 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01342-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents general theoretical studies on asymptotic convergence rate (ACR) for finite dimensional optimization. Given the continuous problem function and discrete time stochastic optimization process, the ACR is the optimal constant for control of the asymptotic behaviour of the expected approximation errors. Under general assumptions, condition ACR\(<1\) implies the linear behaviour of the expected time of hitting the \(\varepsilon \)- optimal sublevel set with \(\varepsilon \rightarrow 0^+ \) and determines the upper bound for the convergence rate of the trajectories of the process. This paper provides general characterization of ACR and, in particular, shows that some algorithms cannot converge linearly fast for any nontrivial continuous optimization problem. The relation between asymptotic convergence rate in the objective space and asymptotic convergence rate in the search space is provided. Examples and numerical simulations with use of a (1+1) self-adaptive evolution strategy and other algorithms are presented.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.