Mechanism of Interaction of Nitro Compounds with Olefins in Acetonitrile

IF 0.9 4区 化学 Q4 CHEMISTRY, PHYSICAL
S. D. Plekhovich, S. V. Zelentsov, I. T. Grimova
{"title":"Mechanism of Interaction of Nitro Compounds with Olefins in Acetonitrile","authors":"S. D. Plekhovich, S. V. Zelentsov, I. T. Grimova","doi":"10.1134/s0018143923060140","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The interaction of 4-fluorostyrene with 4-CN-PhNO<sub>2</sub> in the presence of various solvents has been simulated by quantum chemistry methods. The reaction mechanism and activation barriers of its stages are proposed. The software package Gaussian03 was used for calculations. The optimal geometric parameters of the structures under study were obtained by means of the DFT/WB97XD/DGDZVP2 methods, the TD-SCF/DFT/WB97XD/DGDZVP2 and TD-SCF/DFT/PBEPBE/6-311g++(3d2f,3p2d) methods were used to calculate excited singlet and triplet states, and the IEFPCM model was employed to account for the solvent effects. The transition states were calculated by the TS method using the DFT/PBEPBE/6-311g++(3d2f,3p2d) method.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143923060140","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of 4-fluorostyrene with 4-CN-PhNO2 in the presence of various solvents has been simulated by quantum chemistry methods. The reaction mechanism and activation barriers of its stages are proposed. The software package Gaussian03 was used for calculations. The optimal geometric parameters of the structures under study were obtained by means of the DFT/WB97XD/DGDZVP2 methods, the TD-SCF/DFT/WB97XD/DGDZVP2 and TD-SCF/DFT/PBEPBE/6-311g++(3d2f,3p2d) methods were used to calculate excited singlet and triplet states, and the IEFPCM model was employed to account for the solvent effects. The transition states were calculated by the TS method using the DFT/PBEPBE/6-311g++(3d2f,3p2d) method.

Abstract Image

硝基化合物与烯烃在乙腈中的相互作用机理
摘要用量子化学方法模拟了4-氟苯乙烯与4-CN-PhNO2在不同溶剂存在下的相互作用。提出了反应机理和各阶段的活化障碍。使用软件包Gaussian03进行计算。采用DFT/WB97XD/DGDZVP2方法获得了所研究结构的最佳几何参数,采用TD-SCF/DFT/WB97XD/DGDZVP2和TD-SCF/DFT/PBEPBE/6-311g++(3d2f,3p2d)方法计算了激发单重态和三重态,并采用IEFPCM模型解释了溶剂效应。采用DFT/PBEPBE/6-311g++(3d2f,3p2d)方法计算过渡态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Energy Chemistry
High Energy Chemistry 化学-物理化学
CiteScore
1.50
自引率
28.60%
发文量
62
审稿时长
6-12 weeks
期刊介绍: High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信