Carlos Diaz-Aguilera, Tulio Gaxiola, Jorge Santos, Carlos Vargas
{"title":"Combinatorics of NC-probability spaces with independent constants","authors":"Carlos Diaz-Aguilera, Tulio Gaxiola, Jorge Santos, Carlos Vargas","doi":"10.1142/s0219025722500096","DOIUrl":null,"url":null,"abstract":"The boolean and monotone notions of independence lack the property of independent constants. We address this problem from a combinatorial point of view (based on cumulants defined from weights on set-partitions, in the general framework of operator-valued probability spaces). We show that if the weights are singleton inductive (SI), then all higher-order cumulants involving constants vanish, just as in the free and classical case. Our combinatorial considerations lead rather directly to mild variations of boolean and monotone probability theories which are closely related to the usual notions. The SI-boolean case is related to c-free and Fermi convolutions. We also describe some standard combinatorial aspects of the SI-boolean and cyclic-boolean lattices, such as their Möbius functions, featuring well-known combinatorial integer sequences.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"52 6","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500096","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The boolean and monotone notions of independence lack the property of independent constants. We address this problem from a combinatorial point of view (based on cumulants defined from weights on set-partitions, in the general framework of operator-valued probability spaces). We show that if the weights are singleton inductive (SI), then all higher-order cumulants involving constants vanish, just as in the free and classical case. Our combinatorial considerations lead rather directly to mild variations of boolean and monotone probability theories which are closely related to the usual notions. The SI-boolean case is related to c-free and Fermi convolutions. We also describe some standard combinatorial aspects of the SI-boolean and cyclic-boolean lattices, such as their Möbius functions, featuring well-known combinatorial integer sequences.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.