Effect of Aluminum Content and Mechanical Activation on Ti–Si–Al Synthesis

IF 0.9 4区 工程技术 Q4 ENERGY & FUELS
N. A. Kochetov
{"title":"Effect of Aluminum Content and Mechanical Activation on Ti–Si–Al Synthesis","authors":"N. A. Kochetov","doi":"10.1134/s0010508223050052","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper describes synthesis in 5Ti + 3Si + <span>\\(x\\)</span>Al(<span>\\(x = 0{-}40\\)</span>%) activated mixtures and in an 5Ti + 3Si + 10% Al initial mixture. The effect of mechanical activation and aluminum content on burning rate, maximum combustion temperature, morphology, elongation, integrity, and phase composition of combustion products is studied. Mechanical activation expands the limit of Al content to 40% at which samples can burn without preheating. The following intermetallic alloys are synthesized on the basis of Ti–Si–Al: solid solutions based on Ti(Si<span>\\(_{0.75}\\)</span>Al<span>\\(_{0.25})_{2 }\\)</span> titanium silicide and those based on Ti(Al<span>\\(_{0.9}\\)</span>Si<span>\\(_{0.1})_{3}\\)</span> aluminide titanium.</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":"65 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0010508223050052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes synthesis in 5Ti + 3Si + \(x\)Al(\(x = 0{-}40\)%) activated mixtures and in an 5Ti + 3Si + 10% Al initial mixture. The effect of mechanical activation and aluminum content on burning rate, maximum combustion temperature, morphology, elongation, integrity, and phase composition of combustion products is studied. Mechanical activation expands the limit of Al content to 40% at which samples can burn without preheating. The following intermetallic alloys are synthesized on the basis of Ti–Si–Al: solid solutions based on Ti(Si\(_{0.75}\)Al\(_{0.25})_{2 }\) titanium silicide and those based on Ti(Al\(_{0.9}\)Si\(_{0.1})_{3}\) aluminide titanium.

Abstract Image

铝含量和机械活化对Ti-Si-Al合成的影响
摘要本文介绍了5Ti + 3Si + \(x\) Al(\(x = 0{-}40\)%) activated mixtures and in an 5Ti + 3Si + 10% Al initial mixture. The effect of mechanical activation and aluminum content on burning rate, maximum combustion temperature, morphology, elongation, integrity, and phase composition of combustion products is studied. Mechanical activation expands the limit of Al content to 40% at which samples can burn without preheating. The following intermetallic alloys are synthesized on the basis of Ti–Si–Al: solid solutions based on Ti(Si\(_{0.75}\)Al\(_{0.25})_{2 }\) titanium silicide and those based on Ti(Al\(_{0.9}\)Si\(_{0.1})_{3}\) aluminide titanium.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combustion, Explosion, and Shock Waves
Combustion, Explosion, and Shock Waves 工程技术-材料科学:综合
CiteScore
1.60
自引率
16.70%
发文量
56
审稿时长
5.7 months
期刊介绍: Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信