LN: A Flexible Algorithmic Framework for Layered Queueing Network Analysis

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Giuliano Casale, Yicheng Gao, Zifeng Niu, Lulai Zhu
{"title":"LN: A Flexible Algorithmic Framework for Layered Queueing Network Analysis","authors":"Giuliano Casale, Yicheng Gao, Zifeng Niu, Lulai Zhu","doi":"10.1145/3633457","DOIUrl":null,"url":null,"abstract":"<p>Layered queueing networks (LQNs) are an extension of ordinary queueing networks useful to model simultaneous resource possession and stochastic call graphs in distributed systems. Existing computational algorithms for LQNs have primarily focused on mean-value analysis. However, other solution paradigms, such as normalizing constant analysis and mean-field approximation, can improve the computation of LQN mean and transient performance metrics, state probabilities, and response time distributions. Motivated by this observation, we propose the first LQN meta-solver, called LN, that allows for the dynamic selection of the performance analysis paradigm to be iteratively applied to the submodels arising from layer decomposition. We report experiments where this added flexibility helps us to reduce the LQN solution errors. We also demonstrate that the meta-solver approach eases the integration of LQNs with other formalisms, such as caching models, enabling the analysis of more general classes of layered stochastic networks. Additionally, to support the accurate evaluation of the LQN submodels, we develop novel algorithms for homogeneous queueing networks consisting of an infinite server node and a set of identical queueing stations. In particular, we propose an exact method of moment algorithms, integration techniques for normalizing constants, and a fast non-iterative mean-value analysis technique.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3633457","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Layered queueing networks (LQNs) are an extension of ordinary queueing networks useful to model simultaneous resource possession and stochastic call graphs in distributed systems. Existing computational algorithms for LQNs have primarily focused on mean-value analysis. However, other solution paradigms, such as normalizing constant analysis and mean-field approximation, can improve the computation of LQN mean and transient performance metrics, state probabilities, and response time distributions. Motivated by this observation, we propose the first LQN meta-solver, called LN, that allows for the dynamic selection of the performance analysis paradigm to be iteratively applied to the submodels arising from layer decomposition. We report experiments where this added flexibility helps us to reduce the LQN solution errors. We also demonstrate that the meta-solver approach eases the integration of LQNs with other formalisms, such as caching models, enabling the analysis of more general classes of layered stochastic networks. Additionally, to support the accurate evaluation of the LQN submodels, we develop novel algorithms for homogeneous queueing networks consisting of an infinite server node and a set of identical queueing stations. In particular, we propose an exact method of moment algorithms, integration techniques for normalizing constants, and a fast non-iterative mean-value analysis technique.

分层排队网络分析的灵活算法框架
分层排队网络(LQNs)是对普通排队网络的一种扩展,可用于模拟分布式系统中同时资源占有和随机调用图。现有的lqn计算算法主要集中在均值分析上。然而,其他的解决范例,如正则化常数分析和平均场近似,可以改进LQN平均和瞬态性能度量、状态概率和响应时间分布的计算。受此观察的启发,我们提出了第一个LQN元求解器,称为LN,它允许动态选择性能分析范式,迭代地应用于由层分解产生的子模型。我们报告的实验表明,这种增加的灵活性帮助我们减少了LQN解决方案的错误。我们还证明了元求解器方法简化了lqn与其他形式(如缓存模型)的集成,从而能够分析更一般的分层随机网络类别。此外,为了支持LQN子模型的准确评估,我们开发了由无限服务器节点和一组相同排队站组成的同构排队网络的新算法。特别地,我们提出了一种精确的矩算法方法,一种正则化常数的积分技术,以及一种快速的非迭代均值分析技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信