{"title":"Crystal and Molecular Structures of Three Co-crystals from 1,3-Dimethyl-3,7-dihydro-1H-purine-2,6-dione and Carboxylic Acids","authors":"Zhaozhi Li, Xianhong Wen, Shouwen Jin, Xingjun Gao, Weiqiang Xu, Yaoqi Zhen, Chenzhe Shi, Daqi Wang","doi":"10.1007/s10870-023-01000-3","DOIUrl":null,"url":null,"abstract":"<div><p>The preparation, X-ray crystal structure, Fourier Transform infrared (FTIR) spectroscopy, and elemental analysis of the three complexes (1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione): (2,6-dichlorobenzoic acid)<sub>2</sub>: H<sub>2</sub>O [(tp)· (Hbza)<sub>2</sub> · H<sub>2</sub>O, Hdcba = 2,6-dichlorobenzoic acid] (<b>1</b>) (1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione): (2-pyrazinecarboxylic acid) [(tp) · (Hpyca), Hpyca = 2-pyrazinecarboxylic acid] (<b>2</b>) and (1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione): (3-nitrophthalic acid) [(tp) · (Hntpa)] (<b>3</b>) based on 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione, 2,6-dichlorobenzoic acid 2-pyrazinecarboxylic acid, and 3-nitrophthalic acid are reported. XRD and FTIR analysis indicated that they are all co-crystal. <b>1</b> crystallizes in the monoclinic, space group <i>P</i>2<sub>1</sub>/<i>n</i>, with a = 7.1019(7) Å, b = 12.9494(12) Å, c = 26.253(3) Å, β = 93.536(3)°, V = 2409.8(4) Å<sup>3</sup>, Z = 4. <b>2</b> crystallizes in the monoclinic, space group <i>P</i>2<sub>1</sub>/<i>c</i>, with a = 6.9863(7) Å, b = 25.437(3) Å, c = 7.3987(7) Å, β = 95.152(2)°, V = 1309.5(2) Å<sup>3</sup>, Z = 4. <b>3</b> crystallizes in the monoclinic, space group <i>P</i>2<sub>1</sub>/<i>n</i>, with a = 14.2133(15) Å, b = 8.2333(9) Å, c = 15.3860(17) Å, <i>β</i> = 117.236(5)º, V = 1600.9(3) Å<sup>3</sup>, Z = 4. The imidazole-carboxylic acid synthon of the CO<sub>2</sub>H···N type is observed in all the co-crystal. The imidazole H–N also donated the N–H···O hydrogen bonds in all cases. Apart from the classical hydrogen bonds, the auxiliary expanding interactions as CH···O, CH<sub>3</sub>···O, CH···Cl, O···O, Cl···O, Cl···Cl, Cl···π, O···π, and π···π also play important roles in the structure extension. For the coexistence of the various weak interactions these structures adopted the most common R<sub>2</sub><sup>2</sup>(7) supramolecular synthon. In conclusion, we have shown that 2D–3D connections can be constructed by the collective non-covalent interactions.</p><h3>Graphical Abstract</h3><p>\nIn the three prepared supramolecular assemblies there are plenty of weak nonbonding interactions such as directional hydrogen bonds of O–H···N, N-H···O, O–H···O, intra- and interchain CH···O, CH<sub>3</sub>···O, CH···Cl, O···O, Cl···O, Cl···Cl, Cl···π, O···π, and π···π interactions, on account of these collective weak interactions, these compounds displayed the 2D–3D framework structures.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"54 1","pages":"41 - 53"},"PeriodicalIF":0.4000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Crystallography","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10870-023-01000-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The preparation, X-ray crystal structure, Fourier Transform infrared (FTIR) spectroscopy, and elemental analysis of the three complexes (1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione): (2,6-dichlorobenzoic acid)2: H2O [(tp)· (Hbza)2 · H2O, Hdcba = 2,6-dichlorobenzoic acid] (1) (1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione): (2-pyrazinecarboxylic acid) [(tp) · (Hpyca), Hpyca = 2-pyrazinecarboxylic acid] (2) and (1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione): (3-nitrophthalic acid) [(tp) · (Hntpa)] (3) based on 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione, 2,6-dichlorobenzoic acid 2-pyrazinecarboxylic acid, and 3-nitrophthalic acid are reported. XRD and FTIR analysis indicated that they are all co-crystal. 1 crystallizes in the monoclinic, space group P21/n, with a = 7.1019(7) Å, b = 12.9494(12) Å, c = 26.253(3) Å, β = 93.536(3)°, V = 2409.8(4) Å3, Z = 4. 2 crystallizes in the monoclinic, space group P21/c, with a = 6.9863(7) Å, b = 25.437(3) Å, c = 7.3987(7) Å, β = 95.152(2)°, V = 1309.5(2) Å3, Z = 4. 3 crystallizes in the monoclinic, space group P21/n, with a = 14.2133(15) Å, b = 8.2333(9) Å, c = 15.3860(17) Å, β = 117.236(5)º, V = 1600.9(3) Å3, Z = 4. The imidazole-carboxylic acid synthon of the CO2H···N type is observed in all the co-crystal. The imidazole H–N also donated the N–H···O hydrogen bonds in all cases. Apart from the classical hydrogen bonds, the auxiliary expanding interactions as CH···O, CH3···O, CH···Cl, O···O, Cl···O, Cl···Cl, Cl···π, O···π, and π···π also play important roles in the structure extension. For the coexistence of the various weak interactions these structures adopted the most common R22(7) supramolecular synthon. In conclusion, we have shown that 2D–3D connections can be constructed by the collective non-covalent interactions.
Graphical Abstract
In the three prepared supramolecular assemblies there are plenty of weak nonbonding interactions such as directional hydrogen bonds of O–H···N, N-H···O, O–H···O, intra- and interchain CH···O, CH3···O, CH···Cl, O···O, Cl···O, Cl···Cl, Cl···π, O···π, and π···π interactions, on account of these collective weak interactions, these compounds displayed the 2D–3D framework structures.
期刊介绍:
Journal of Chemical Crystallography is an international and interdisciplinary publication dedicated to the rapid dissemination of research results in the general areas of crystallography and spectroscopy. Timely research reports detail topics in crystal chemistry and physics and their relation to problems of molecular structure; structural studies of solids, liquids, gases, and solutions involving spectroscopic, spectrometric, X-ray, and electron and neutron diffraction; and theoretical studies.