Cascade: A Platform for Delay-Sensitive Edge Intelligence

Weijia Song, Thiago Garrett, Yuting Yang, Mingzhao Liu, Edward Tremel, Lorenzo Rosa, Andrea Merlina, Roman Vitenberg, Ken Birman
{"title":"Cascade: A Platform for Delay-Sensitive Edge Intelligence","authors":"Weijia Song, Thiago Garrett, Yuting Yang, Mingzhao Liu, Edward Tremel, Lorenzo Rosa, Andrea Merlina, Roman Vitenberg, Ken Birman","doi":"arxiv-2311.17329","DOIUrl":null,"url":null,"abstract":"Interactive intelligent computing applications are increasingly prevalent,\ncreating a need for AI/ML platforms optimized to reduce per-event latency while\nmaintaining high throughput and efficient resource management. Yet many\nintelligent applications run on AI/ML platforms that optimize for high\nthroughput even at the cost of high tail-latency. Cascade is a new AI/ML\nhosting platform intended to untangle this puzzle. Innovations include a\nlegacy-friendly storage layer that moves data with minimal copying and a \"fast\npath\" that collocates data and computation to maximize responsiveness. Our\nevaluation shows that Cascade reduces latency by orders of magnitude with no\nloss of throughput.","PeriodicalId":501333,"journal":{"name":"arXiv - CS - Operating Systems","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interactive intelligent computing applications are increasingly prevalent, creating a need for AI/ML platforms optimized to reduce per-event latency while maintaining high throughput and efficient resource management. Yet many intelligent applications run on AI/ML platforms that optimize for high throughput even at the cost of high tail-latency. Cascade is a new AI/ML hosting platform intended to untangle this puzzle. Innovations include a legacy-friendly storage layer that moves data with minimal copying and a "fast path" that collocates data and computation to maximize responsiveness. Our evaluation shows that Cascade reduces latency by orders of magnitude with no loss of throughput.
级联:延迟敏感边缘智能平台
交互式智能计算应用程序越来越普遍,因此需要对AI/ML平台进行优化,以减少每个事件的延迟,同时保持高吞吐量和高效的资源管理。然而,许多智能应用程序运行在AI/ML平台上,即使以高尾延迟为代价,也会为高吞吐量进行优化。Cascade是一个新的AI/MLhosting平台,旨在解开这个谜团。创新包括传统友好的存储层,以最小的复制移动数据,以及“快速路径”,将数据和计算并置,以最大限度地提高响应能力。我们的评估表明,级联在不损失吞吐量的情况下减少了几个数量级的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信