Unveiling Early Warning Signals of Systemic Risks in Banks: A Recurrence Network-Based Approach

Shijia Song, Handong Li
{"title":"Unveiling Early Warning Signals of Systemic Risks in Banks: A Recurrence Network-Based Approach","authors":"Shijia Song, Handong Li","doi":"arxiv-2310.10283","DOIUrl":null,"url":null,"abstract":"Bank crisis is challenging to define but can be manifested through bank\ncontagion. This study presents a comprehensive framework grounded in nonlinear\ntime series analysis to identify potential early warning signals (EWS) for\nimpending phase transitions in bank systems, with the goal of anticipating\nsevere bank crisis. In contrast to traditional analyses of exposure networks\nusing low-frequency data, we argue that studying the dynamic relationships\namong bank stocks using high-frequency data offers a more insightful\nperspective on changes in the banking system. We construct multiple recurrence\nnetworks (MRNs) based on multidimensional returns of listed banks' stocks in\nChina, aiming to monitor the nonlinear dynamics of the system through the\ncorresponding indicators and topological structures. Empirical findings\nindicate that key indicators of MRNs, specifically the average mutual\ninformation, provide valuable insights into periods of extreme volatility of\nbank system. This paper contributes to the ongoing discourse on early warning\nsignals for bank instability, highlighting the applicability of predicting\nsystemic risks in the context of banking networks.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"308 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.10283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bank crisis is challenging to define but can be manifested through bank contagion. This study presents a comprehensive framework grounded in nonlinear time series analysis to identify potential early warning signals (EWS) for impending phase transitions in bank systems, with the goal of anticipating severe bank crisis. In contrast to traditional analyses of exposure networks using low-frequency data, we argue that studying the dynamic relationships among bank stocks using high-frequency data offers a more insightful perspective on changes in the banking system. We construct multiple recurrence networks (MRNs) based on multidimensional returns of listed banks' stocks in China, aiming to monitor the nonlinear dynamics of the system through the corresponding indicators and topological structures. Empirical findings indicate that key indicators of MRNs, specifically the average mutual information, provide valuable insights into periods of extreme volatility of bank system. This paper contributes to the ongoing discourse on early warning signals for bank instability, highlighting the applicability of predicting systemic risks in the context of banking networks.
揭示银行系统性风险的预警信号:一种基于循环网络的方法
银行危机很难定义,但可以通过银行传染表现出来。本研究提出了一个基于非线性时间序列分析的综合框架,以识别银行系统中即将发生的相变的潜在预警信号(EWS),目标是预测严重的银行危机。与传统的使用低频数据分析风险网络相比,我们认为使用高频数据研究银行股之间的动态关系可以更深入地了解银行系统的变化。本文基于中国上市银行股票的多维收益,构建了多递归网络(mrn),旨在通过相应的指标和拓扑结构来监测系统的非线性动态。实证结果表明,mrn的关键指标,特别是平均相互信息,为银行系统的极端波动时期提供了有价值的见解。本文对正在进行的关于银行不稳定预警信号的讨论做出了贡献,强调了在银行网络背景下预测系统性风险的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信