Can GPT models be Financial Analysts? An Evaluation of ChatGPT and GPT-4 on mock CFA Exams

Ethan Callanan, Amarachi Mbakwe, Antony Papadimitriou, Yulong Pei, Mathieu Sibue, Xiaodan Zhu, Zhiqiang Ma, Xiaomo Liu, Sameena Shah
{"title":"Can GPT models be Financial Analysts? An Evaluation of ChatGPT and GPT-4 on mock CFA Exams","authors":"Ethan Callanan, Amarachi Mbakwe, Antony Papadimitriou, Yulong Pei, Mathieu Sibue, Xiaodan Zhu, Zhiqiang Ma, Xiaomo Liu, Sameena Shah","doi":"arxiv-2310.08678","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) have demonstrated remarkable performance on a\nwide range of Natural Language Processing (NLP) tasks, often matching or even\nbeating state-of-the-art task-specific models. This study aims at assessing the\nfinancial reasoning capabilities of LLMs. We leverage mock exam questions of\nthe Chartered Financial Analyst (CFA) Program to conduct a comprehensive\nevaluation of ChatGPT and GPT-4 in financial analysis, considering Zero-Shot\n(ZS), Chain-of-Thought (CoT), and Few-Shot (FS) scenarios. We present an\nin-depth analysis of the models' performance and limitations, and estimate\nwhether they would have a chance at passing the CFA exams. Finally, we outline\ninsights into potential strategies and improvements to enhance the\napplicability of LLMs in finance. In this perspective, we hope this work paves\nthe way for future studies to continue enhancing LLMs for financial reasoning\nthrough rigorous evaluation.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"202 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.08678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs) have demonstrated remarkable performance on a wide range of Natural Language Processing (NLP) tasks, often matching or even beating state-of-the-art task-specific models. This study aims at assessing the financial reasoning capabilities of LLMs. We leverage mock exam questions of the Chartered Financial Analyst (CFA) Program to conduct a comprehensive evaluation of ChatGPT and GPT-4 in financial analysis, considering Zero-Shot (ZS), Chain-of-Thought (CoT), and Few-Shot (FS) scenarios. We present an in-depth analysis of the models' performance and limitations, and estimate whether they would have a chance at passing the CFA exams. Finally, we outline insights into potential strategies and improvements to enhance the applicability of LLMs in finance. In this perspective, we hope this work paves the way for future studies to continue enhancing LLMs for financial reasoning through rigorous evaluation.
GPT模型能成为金融分析师吗?模拟CFA考试中ChatGPT和GPT-4的评价
大型语言模型(llm)在广泛的自然语言处理(NLP)任务中表现出了卓越的性能,通常可以匹配甚至超过最先进的任务特定模型。本研究旨在评估法学硕士的财务推理能力。我们利用特许金融分析师(CFA)课程的模拟考试问题,对金融分析中的ChatGPT和GPT-4进行全面评估,考虑零射击(ZS),思维链(CoT)和少射击(FS)场景。我们对这些模型的性能和局限性进行了深入分析,并估计它们是否有机会通过CFA考试。最后,我们概述了提高法学硕士在金融领域适用性的潜在策略和改进。从这个角度来看,我们希望这项工作为未来的研究铺平道路,通过严格的评估,继续提高法学硕士的金融推理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信