High-Throughput Asset Pricing

Andrew Y. Chen, Chukwuma Dim
{"title":"High-Throughput Asset Pricing","authors":"Andrew Y. Chen, Chukwuma Dim","doi":"arxiv-2311.10685","DOIUrl":null,"url":null,"abstract":"We use empirical Bayes (EB) to mine for out-of-sample returns among 73,108\nlong-short strategies constructed from accounting ratios, past returns, and\nticker symbols. EB predicts returns are concentrated in accounting and past\nreturn strategies, small stocks, and pre-2004 samples. The cross-section of\nout-of-sample return lines up closely with EB predictions. Data-mined\nportfolios have mean returns comparable with published portfolios, but the\ndata-mined returns are arguably free of data mining bias. In contrast,\ncontrolling for multiple testing following Harvey, Liu, and Zhu (2016) misses\nthe vast majority of returns. This \"high-throughput asset pricing\" provides an\nevidence-based solution for data mining bias.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"174 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.10685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use empirical Bayes (EB) to mine for out-of-sample returns among 73,108 long-short strategies constructed from accounting ratios, past returns, and ticker symbols. EB predicts returns are concentrated in accounting and past return strategies, small stocks, and pre-2004 samples. The cross-section of out-of-sample return lines up closely with EB predictions. Data-mined portfolios have mean returns comparable with published portfolios, but the data-mined returns are arguably free of data mining bias. In contrast, controlling for multiple testing following Harvey, Liu, and Zhu (2016) misses the vast majority of returns. This "high-throughput asset pricing" provides an evidence-based solution for data mining bias.
高通量资产定价
我们使用经验贝叶斯(EB)从会计比率、过去收益和股票代码构建的73,108个多空策略中挖掘样本外收益。EB预测的回报集中在会计和过去的回报策略、小股和2004年以前的样本上。样本外回报的横截面与EB预测密切相关。数据挖掘的投资组合具有与已发布的投资组合相当的平均回报,但数据挖掘的回报可以说没有数据挖掘的偏见。相比之下,在Harvey, Liu, and Zhu(2016)之后,控制多重测试错过了绝大多数回报。这种“高通量资产定价”为数据挖掘偏见提供了一种基于证据的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信