On the global minimum of the classical potential energy for clusters bound by many-body forces

Michael K. -H. Kiessling, David J. Wales
{"title":"On the global minimum of the classical potential energy for clusters bound by many-body forces","authors":"Michael K. -H. Kiessling, David J. Wales","doi":"arxiv-2312.00988","DOIUrl":null,"url":null,"abstract":"This note establishes, first of all, the monotonic increase with $N$ of the\naverage $K$-body energy of classical $N$-body ground state configurations with\n$N\\geq K$ monomers that interact solely through a permutation-symmetric\n$K$-body potential, for any fixed integer $K\\geq 2$. For the special case $K=2$\nthis result had previously been proved, and used successfully as a test\ncriterion for optimality of computer-generated lists of putative ground states\nof $N$-body clusters for various types of pairwise interactions. Second,\nrelated monotonicity results are established for $N$-monomer ground state\nconfigurations whose monomers interact through additive mixtures of certain\ntypes of $k$-meric potentials, $k\\in\\{1,...,K\\}$, with $K\\geq 2$ fixed and\n$N\\geq K$. All the monotonicity results furnish simple necessary conditions for\noptimality that any pertinent list of computer-generated putative global\nminimum energies for $N$-monomer clusters has to satisfy. As an application,\ndatabases of $N$-body cluster energies computed with an additive mix of the\ndimeric Lennard-Jones and trimeric Axilrod--Teller interactions are inspected.\nWe also address how many local minima satisfy the upper bound inferred from the\nmonotonicity conditions, both from a theoretical and from an empirical\nperspective.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"18 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This note establishes, first of all, the monotonic increase with $N$ of the average $K$-body energy of classical $N$-body ground state configurations with $N\geq K$ monomers that interact solely through a permutation-symmetric $K$-body potential, for any fixed integer $K\geq 2$. For the special case $K=2$ this result had previously been proved, and used successfully as a test criterion for optimality of computer-generated lists of putative ground states of $N$-body clusters for various types of pairwise interactions. Second, related monotonicity results are established for $N$-monomer ground state configurations whose monomers interact through additive mixtures of certain types of $k$-meric potentials, $k\in\{1,...,K\}$, with $K\geq 2$ fixed and $N\geq K$. All the monotonicity results furnish simple necessary conditions for optimality that any pertinent list of computer-generated putative global minimum energies for $N$-monomer clusters has to satisfy. As an application, databases of $N$-body cluster energies computed with an additive mix of the dimeric Lennard-Jones and trimeric Axilrod--Teller interactions are inspected. We also address how many local minima satisfy the upper bound inferred from the monotonicity conditions, both from a theoretical and from an empirical perspective.
受多体力约束的团簇经典势能的全局最小值
本文首先确定,对于任意固定整数$K\geq 2$,经典的$N$ -体基态构型的平均$K$ -体能量随$N$的单调增长,$N\geq K$单体仅通过排列对称的$K$ -体势相互作用。对于特殊情况$K=2$,这一结果先前已被证明,并成功地用作计算机生成的$N$ -体簇假定基态列表的最优性的测试标准,用于各种类型的成对相互作用。其次,建立了$N$ -单体基态构型的相关单调性结果,该构型的单体通过特定类型的$k$ -单位能($k\in\{1,...,K\}$)与$K\geq 2$固定和$N\geq K$的添加剂混合物相互作用。所有单调性结果都提供了最优性的简单必要条件,即任何计算机生成的关于$N$ -单体簇的假定全局最小能量的相关列表都必须满足。作为一个应用,$N$ -体簇能数据库的计算与二聚Lennard-Jones和三聚Axilrod- Teller相互作用的添加剂混合进行了检查。我们还从理论和经验的角度讨论了有多少局部极小值满足从单调性条件推断出的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信