Comprehensive Molecular Representation from Equivariant Transformer

Nianze Tao, Hiromi Morimoto, Stefano Leoni
{"title":"Comprehensive Molecular Representation from Equivariant Transformer","authors":"Nianze Tao, Hiromi Morimoto, Stefano Leoni","doi":"arxiv-2308.10752","DOIUrl":null,"url":null,"abstract":"We implement an equivariant transformer that embeds molecular net charge and\nspin state without additional neural network parameters. The model trained on a\nsinglet/triplet non-correlated \\ce{CH2} dataset can identify different spin\nstates and shows state-of-the-art extrapolation capability. We found that\nSoftmax activation function utilised in the self-attention mechanism of graph\nnetworks outperformed ReLU-like functions in prediction accuracy. Additionally,\nincreasing the attention temperature from $\\tau = \\sqrt{d}$ to $\\sqrt{2d}$\nfurther improved the extrapolation capability. We also purposed a weight\ninitialisation method that sensibly accelerated the training process.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.10752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We implement an equivariant transformer that embeds molecular net charge and spin state without additional neural network parameters. The model trained on a singlet/triplet non-correlated \ce{CH2} dataset can identify different spin states and shows state-of-the-art extrapolation capability. We found that Softmax activation function utilised in the self-attention mechanism of graph networks outperformed ReLU-like functions in prediction accuracy. Additionally, increasing the attention temperature from $\tau = \sqrt{d}$ to $\sqrt{2d}$ further improved the extrapolation capability. We also purposed a weight initialisation method that sensibly accelerated the training process.
等变变压器的综合分子表示
我们实现了一个嵌入分子净电荷和自旋态的等变变压器,而不需要额外的神经网络参数。在单态/三重态不相关\ce{CH2}数据集上训练的模型可以识别不同的旋态,并显示出最先进的外推能力。我们发现,在graphnetworks的自注意机制中使用softmax激活函数在预测精度上优于类relu函数。此外,将注意力温度从$\tau = \sqrt{d}$提高到$\sqrt{2d}$进一步提高了外推能力。我们还设计了一种权重初始化方法,可以明显地加速训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信