Parameter identifiability and model selection for partial differential equation models of cell invasion

Yue LiuMathematical Institute, University of Oxford, Kevin SuhDepartment of Chemical and Biological Engineering, Princeton University, Philip K. MainiMathematical Institute, University of Oxford, Daniel J. CohenDepartment of Chemical and Biological Engineering, Princeton UniversityDepartment of Mechanical and Aerospace Engineering, Princeton University, Ruth E. BakerMathematical Institute, University of Oxford
{"title":"Parameter identifiability and model selection for partial differential equation models of cell invasion","authors":"Yue LiuMathematical Institute, University of Oxford, Kevin SuhDepartment of Chemical and Biological Engineering, Princeton University, Philip K. MainiMathematical Institute, University of Oxford, Daniel J. CohenDepartment of Chemical and Biological Engineering, Princeton UniversityDepartment of Mechanical and Aerospace Engineering, Princeton University, Ruth E. BakerMathematical Institute, University of Oxford","doi":"arxiv-2309.01476","DOIUrl":null,"url":null,"abstract":"When employing a mechanistic model to study biological systems, practical\nparameter identifiability is important for making predictions in a wide range\nof scenarios, as well as for understanding the mechanisms driving the system\nbehaviour. We argue that parameter identifiability should be considered\nalongside goodness-of-fit and model complexity as criteria for model selection.\nTo demonstrate, we use a profile likelihood approach to investigate parameter\nidentifiability for four extensions of the Fisher--KPP model, given\nexperimental data from a cell invasion assay. We show that more complicated\nmodels tend to be less identifiable, with parameter estimates being more\nsensitive to subtle differences in experimental procedures, and require more\ndata to be practically identifiable. The results from identifiability analysis\ncan inform model selection, as well as data collection and experimental design.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"35 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.01476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When employing a mechanistic model to study biological systems, practical parameter identifiability is important for making predictions in a wide range of scenarios, as well as for understanding the mechanisms driving the system behaviour. We argue that parameter identifiability should be considered alongside goodness-of-fit and model complexity as criteria for model selection. To demonstrate, we use a profile likelihood approach to investigate parameter identifiability for four extensions of the Fisher--KPP model, given experimental data from a cell invasion assay. We show that more complicated models tend to be less identifiable, with parameter estimates being more sensitive to subtle differences in experimental procedures, and require more data to be practically identifiable. The results from identifiability analysis can inform model selection, as well as data collection and experimental design.
细胞侵袭偏微分方程模型的参数可辨识性及模型选择
当采用机制模型来研究生物系统时,实际参数的可识别性对于在广泛的场景中进行预测以及理解驱动系统行为的机制非常重要。我们认为参数可识别性应该与拟合优度和模型复杂性一起作为模型选择的标准。为了证明这一点,我们使用了一种似是而非的方法来研究Fisher- KPP模型的四种扩展的参数可识别性,给出了细胞入侵试验的实验数据。我们表明,更复杂的模型往往难以识别,参数估计对实验过程中的细微差异更敏感,并且需要更多的数据才能实际识别。可识别性分析的结果可以为模型选择、数据收集和实验设计提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信