Machine learning methods for American-style path-dependent contracts

Matteo Gambara, Giulia Livieri, Andrea Pallavicini
{"title":"Machine learning methods for American-style path-dependent contracts","authors":"Matteo Gambara, Giulia Livieri, Andrea Pallavicini","doi":"arxiv-2311.16762","DOIUrl":null,"url":null,"abstract":"In the present work, we introduce and compare state-of-the-art algorithms,\nthat are now classified under the name of machine learning, to price Asian and\nlook-back products with early-termination features. These include randomized\nfeed-forward neural networks, randomized recurrent neural networks, and a novel\nmethod based on signatures of the underlying price process. Additionally, we\nexplore potential applications on callable certificates. Furthermore, we\npresent an innovative approach for calculating sensitivities, specifically\nDelta and Gamma, leveraging Chebyshev interpolation techniques.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.16762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, we introduce and compare state-of-the-art algorithms, that are now classified under the name of machine learning, to price Asian and look-back products with early-termination features. These include randomized feed-forward neural networks, randomized recurrent neural networks, and a novel method based on signatures of the underlying price process. Additionally, we explore potential applications on callable certificates. Furthermore, we present an innovative approach for calculating sensitivities, specifically Delta and Gamma, leveraging Chebyshev interpolation techniques.
美式路径依赖契约的机器学习方法
在目前的工作中,我们介绍并比较了最先进的算法,这些算法现在被归类为机器学习,用于为具有早期终止功能的亚洲和回溯产品定价。这些方法包括随机前馈神经网络、随机循环神经网络和一种基于基础价格过程特征的新方法。此外,我们还探讨了可调用证书的潜在应用。此外,我们提出了一种创新的方法来计算灵敏度,特别是delta和Gamma,利用切比雪夫插值技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信