Rational tensegrities through the lens of toric geometry

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Fatemeh Mohammadi , Xian Wu
{"title":"Rational tensegrities through the lens of toric geometry","authors":"Fatemeh Mohammadi ,&nbsp;Xian Wu","doi":"10.1016/j.comgeo.2023.102075","DOIUrl":null,"url":null,"abstract":"<div><p>A classical tensegrity model consists of an embedded graph in a vector space with rigid bars representing edges, and an assignment of a stress to every edge such that at every vertex of the graph the stresses sum up to zero. The tensegrity frameworks have been recently extended from the two dimensional graph case to the multidimensional setting. We study the multidimensional tensegrities using tools from toric geometry. We introduce a link between self-stresses and Chow rings on toric varieties. More precisely, for a given rational tensegrity framework <span><math><mi>F</mi></math></span>, we construct a glued toric surface <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span><span>. We show that the abelian group of tensegrities on </span><span><math><mi>F</mi></math></span> is isomorphic to a subgroup of the Chow group <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>;</mo><mi>Q</mi><mo>)</mo></math></span>. In the case of planar frameworks, we show how to explicitly carry out the computation of tensegrities via classical tools in toric geometry.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000950","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A classical tensegrity model consists of an embedded graph in a vector space with rigid bars representing edges, and an assignment of a stress to every edge such that at every vertex of the graph the stresses sum up to zero. The tensegrity frameworks have been recently extended from the two dimensional graph case to the multidimensional setting. We study the multidimensional tensegrities using tools from toric geometry. We introduce a link between self-stresses and Chow rings on toric varieties. More precisely, for a given rational tensegrity framework F, we construct a glued toric surface XF. We show that the abelian group of tensegrities on F is isomorphic to a subgroup of the Chow group A1(XF;Q). In the case of planar frameworks, we show how to explicitly carry out the computation of tensegrities via classical tools in toric geometry.

通过环面几何透镜的有理张拉整体
一个经典的张拉整体模型由一个嵌入在向量空间中的图形组成,其中刚性条表示边缘,并为每个边缘分配应力,使图的每个顶点的应力总和为零。张拉整体框架最近已经从二维图的情况下扩展到多维设置。我们利用环面几何的工具研究了多维张拉整体。我们介绍了自应力和周环之间的联系,在toric品种。更准确地说,对于给定的有理张拉整体框架F,我们构造了一个粘接的环面XF。我们证明了F上张拉整体的阿贝尔群同构于Chow群A1(XF;Q)的一个子群。在平面框架的情况下,我们展示了如何通过经典工具在环几何中显式地执行张拉整体的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信