Integrable extensions of two-center Coulomb systems

Francisco Correa, Octavio Quintana
{"title":"Integrable extensions of two-center Coulomb systems","authors":"Francisco Correa, Octavio Quintana","doi":"arxiv-2312.02013","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate new integrable extensions of two-center Coulomb\nsystems. We study the most general $n$-dimensional deformation of the\ntwo-center problem by adding arbitrary functions supporting second order\ncommuting conserved quantities. The system is superintegrable for $n>4$ and,\nfor certain choices of the arbitrary functions, reduces to known models\npreviously discovered. Then, based on this extended system, we introduce an\nadditional integrable generalisation involving Calogero interactions for $n=3$.\nIn all examples, including the two-center problem, we explicitly present the\ncomplete list of Liouville integrals in terms of second-order integrals of\nmotion.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate new integrable extensions of two-center Coulomb systems. We study the most general $n$-dimensional deformation of the two-center problem by adding arbitrary functions supporting second order commuting conserved quantities. The system is superintegrable for $n>4$ and, for certain choices of the arbitrary functions, reduces to known models previously discovered. Then, based on this extended system, we introduce an additional integrable generalisation involving Calogero interactions for $n=3$. In all examples, including the two-center problem, we explicitly present the complete list of Liouville integrals in terms of second-order integrals of motion.
双中心库仑系统的可积扩展
本文研究了两中心库仑系统的新的可积扩展。通过加入支持二阶可交换守恒量的任意函数,研究了双中心问题最一般的n维变形。当n>4时,系统是可超积的,对于任意函数的某些选择,系统可以简化为已知的模型。然后,在此扩展系统的基础上,我们引入了一个额外的可积广义,涉及到$n=3$的Calogero相互作用。在包括双中心问题在内的所有例子中,我们都明确地给出了用运动的二阶积分表示的Liouville积分的完整列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信