In search of the perfect fit: interpretation, flexible modelling, and the existing generalisations of the normal distribution

Andriette Bekker, Matthias Wagener, Muhammad Arashi
{"title":"In search of the perfect fit: interpretation, flexible modelling, and the existing generalisations of the normal distribution","authors":"Andriette Bekker, Matthias Wagener, Muhammad Arashi","doi":"arxiv-2311.17962","DOIUrl":null,"url":null,"abstract":"Many generalised distributions exist for modelling data with vastly diverse\ncharacteristics. However, very few of these generalisations of the normal\ndistribution have shape parameters with clear roles that determine, for\ninstance, skewness and tail shape. In this chapter, we review existing skewing\nmechanisms and their properties in detail. Using the knowledge acquired, we add\na skewness parameter to the body-tail generalised normal distribution\n\\cite{BTGN}, that yields the \\ac{FIN} with parameters for location, scale,\nbody-shape, skewness, and tail weight. Basic statistical properties of the\n\\ac{FIN} are provided, such as the \\ac{PDF}, cumulative distribution function,\nmoments, and likelihood equations. Additionally, the \\ac{FIN} \\ac{PDF} is\nextended to a multivariate setting using a student t-copula, yielding the\n\\ac{MFIN}. The \\ac{MFIN} is applied to stock returns data, where it outperforms\nthe t-copula multivariate generalised hyperbolic, Azzalini skew-t, hyperbolic,\nand normal inverse Gaussian distributions.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"85 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many generalised distributions exist for modelling data with vastly diverse characteristics. However, very few of these generalisations of the normal distribution have shape parameters with clear roles that determine, for instance, skewness and tail shape. In this chapter, we review existing skewing mechanisms and their properties in detail. Using the knowledge acquired, we add a skewness parameter to the body-tail generalised normal distribution \cite{BTGN}, that yields the \ac{FIN} with parameters for location, scale, body-shape, skewness, and tail weight. Basic statistical properties of the \ac{FIN} are provided, such as the \ac{PDF}, cumulative distribution function, moments, and likelihood equations. Additionally, the \ac{FIN} \ac{PDF} is extended to a multivariate setting using a student t-copula, yielding the \ac{MFIN}. The \ac{MFIN} is applied to stock returns data, where it outperforms the t-copula multivariate generalised hyperbolic, Azzalini skew-t, hyperbolic, and normal inverse Gaussian distributions.
寻找完美的拟合:解释,灵活的建模,以及正态分布的现有概括
存在许多广义分布,用于建模具有大量不同特征的数据。然而,很少有正态分布的这些概括具有具有明确作用的形状参数,例如,决定偏度和尾部形状。在本章中,我们详细回顾了现有的偏斜机制及其性质。利用所获得的知识,我们将偏度参数添加到体尾广义正态分布\cite{BTGN}中,从而得到包含位置、规模、体型、偏度和尾重参数的\ac{FIN}。提供了\ac{FIN}的基本统计特性,如\ac{PDF}、累积分布函数、矩和似然方程。此外,使用学生t-copula将\ac{FIN}\ac{PDF}扩展到多变量设置,从而得到\ac{MFIN}。\ac{MFIN}应用于股票收益数据,它优于t-copula多元广义双曲分布、Azzalini偏t分布、双曲分布和正态反高斯分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信