Perturbation-based Analysis of Compositional Data

Anton Rask Lundborg, Niklas Pfister
{"title":"Perturbation-based Analysis of Compositional Data","authors":"Anton Rask Lundborg, Niklas Pfister","doi":"arxiv-2311.18501","DOIUrl":null,"url":null,"abstract":"Existing statistical methods for compositional data analysis are inadequate\nfor many modern applications for two reasons. First, modern compositional\ndatasets, for example in microbiome research, display traits such as\nhigh-dimensionality and sparsity that are poorly modelled with traditional\napproaches. Second, assessing -- in an unbiased way -- how summary statistics\nof a composition (e.g., racial diversity) affect a response variable is not\nstraightforward. In this work, we propose a framework based on hypothetical\ndata perturbations that addresses both issues. Unlike existing methods for\ncompositional data, we do not transform the data and instead use perturbations\nto define interpretable statistical functionals on the compositions themselves,\nwhich we call average perturbation effects. These average perturbation effects,\nwhich can be employed in many applications, naturally account for confounding\nthat biases frequently used marginal dependence analyses. We show how average\nperturbation effects can be estimated efficiently by deriving a\nperturbation-dependent reparametrization and applying semiparametric estimation\ntechniques. We analyze the proposed estimators empirically on simulated data\nand demonstrate advantages over existing techniques on US census and microbiome\ndata. For all proposed estimators, we provide confidence intervals with uniform\nasymptotic coverage guarantees.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"86 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing statistical methods for compositional data analysis are inadequate for many modern applications for two reasons. First, modern compositional datasets, for example in microbiome research, display traits such as high-dimensionality and sparsity that are poorly modelled with traditional approaches. Second, assessing -- in an unbiased way -- how summary statistics of a composition (e.g., racial diversity) affect a response variable is not straightforward. In this work, we propose a framework based on hypothetical data perturbations that addresses both issues. Unlike existing methods for compositional data, we do not transform the data and instead use perturbations to define interpretable statistical functionals on the compositions themselves, which we call average perturbation effects. These average perturbation effects, which can be employed in many applications, naturally account for confounding that biases frequently used marginal dependence analyses. We show how average perturbation effects can be estimated efficiently by deriving a perturbation-dependent reparametrization and applying semiparametric estimation techniques. We analyze the proposed estimators empirically on simulated data and demonstrate advantages over existing techniques on US census and microbiome data. For all proposed estimators, we provide confidence intervals with uniform asymptotic coverage guarantees.
基于微扰的成分数据分析
现有的成分数据分析的统计方法不适合许多现代应用,原因有两个。首先,现代组合数据集,例如在微生物组研究中,显示出诸如高维性和稀疏性等特征,这些特征在传统方法中很难建模。其次,以无偏见的方式评估组成(例如,种族多样性)的汇总统计数据如何影响响应变量并不简单。在这项工作中,我们提出了一个基于假设数据扰动的框架来解决这两个问题。与现有的组合数据方法不同,我们不转换数据,而是使用摄动来定义组合本身的可解释统计函数,我们称之为平均摄动效应。这些平均扰动效应可以在许多应用中使用,自然地解释了经常使用边际依赖分析的偏差的混淆。我们展示了如何通过推导孔径相关的再参数化和应用半参数估计技术有效地估计平均扰动效应。我们在模拟数据上对所提出的估计器进行了实证分析,并在美国人口普查和微观生物数据上证明了其优于现有技术的优势。对于所有提出的估计,我们提供了具有均匀渐近覆盖保证的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信