Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances

Spencer Compton, Gregory Valiant
{"title":"Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances","authors":"Spencer Compton, Gregory Valiant","doi":"arxiv-2312.02417","DOIUrl":null,"url":null,"abstract":"Given data drawn from a collection of Gaussian variables with a common mean\nbut different and unknown variances, what is the best algorithm for estimating\ntheir common mean? We present an intuitive and efficient algorithm for this\ntask. As different closed-form guarantees can be hard to compare, the\nSubset-of-Signals model serves as a benchmark for heteroskedastic mean\nestimation: given $n$ Gaussian variables with an unknown subset of $m$\nvariables having variance bounded by 1, what is the optimal estimation error as\na function of $n$ and $m$? Our algorithm resolves this open question up to\nlogarithmic factors, improving upon the previous best known estimation error by\npolynomial factors when $m = n^c$ for all $0<c<1$. Of particular note, we\nobtain error $o(1)$ with $m = \\tilde{O}(n^{1/4})$ variance-bounded samples,\nwhereas previous work required $m = \\tilde{\\Omega}(n^{1/2})$. Finally, we show\nthat in the multi-dimensional setting, even for $d=2$, our techniques enable\nrates comparable to knowing the variance of each sample.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"87 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given data drawn from a collection of Gaussian variables with a common mean but different and unknown variances, what is the best algorithm for estimating their common mean? We present an intuitive and efficient algorithm for this task. As different closed-form guarantees can be hard to compare, the Subset-of-Signals model serves as a benchmark for heteroskedastic mean estimation: given $n$ Gaussian variables with an unknown subset of $m$ variables having variance bounded by 1, what is the optimal estimation error as a function of $n$ and $m$? Our algorithm resolves this open question up to logarithmic factors, improving upon the previous best known estimation error by polynomial factors when $m = n^c$ for all $0
具有未知异方差的近最优均值估计
给定从高斯变量集合中提取的数据,这些变量具有共同的平均值,但方差不同且未知,那么估计它们的共同平均值的最佳算法是什么?我们提出了一种直观有效的算法。由于不同的封闭形式保证很难比较,信号子集模型作为异方差均值估计的基准:给定$n$高斯变量与未知的$m$变量子集,其方差以1为界,作为$n$和$m$的函数,最优估计误差是什么?我们的算法通过拓扑因素解决了这个开放的问题,当$m = n^c$对于所有$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信