Multiple Testing of Linear Forms for Noisy Matrix Completion

Wanteng Ma, Lilun Du, Dong Xia, Ming Yuan
{"title":"Multiple Testing of Linear Forms for Noisy Matrix Completion","authors":"Wanteng Ma, Lilun Du, Dong Xia, Ming Yuan","doi":"arxiv-2312.00305","DOIUrl":null,"url":null,"abstract":"Many important tasks of large-scale recommender systems can be naturally cast\nas testing multiple linear forms for noisy matrix completion. These problems,\nhowever, present unique challenges because of the subtle bias-and-variance\ntradeoff of and an intricate dependence among the estimated entries induced by\nthe low-rank structure. In this paper, we develop a general approach to\novercome these difficulties by introducing new statistics for individual tests\nwith sharp asymptotics both marginally and jointly, and utilizing them to\ncontrol the false discovery rate (FDR) via a data splitting and symmetric\naggregation scheme. We show that valid FDR control can be achieved with\nguaranteed power under nearly optimal sample size requirements using the\nproposed methodology. Extensive numerical simulations and real data examples\nare also presented to further illustrate its practical merits.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"88 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many important tasks of large-scale recommender systems can be naturally cast as testing multiple linear forms for noisy matrix completion. These problems, however, present unique challenges because of the subtle bias-and-variance tradeoff of and an intricate dependence among the estimated entries induced by the low-rank structure. In this paper, we develop a general approach to overcome these difficulties by introducing new statistics for individual tests with sharp asymptotics both marginally and jointly, and utilizing them to control the false discovery rate (FDR) via a data splitting and symmetric aggregation scheme. We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements using the proposed methodology. Extensive numerical simulations and real data examples are also presented to further illustrate its practical merits.
噪声矩阵补全线性形式的多重检验
大规模推荐系统的许多重要任务都可以自然地转换为测试多线性形式的噪声矩阵补全。然而,这些问题呈现出独特的挑战,因为由低秩结构引起的估计条目之间存在微妙的偏差和方差权衡和复杂的依赖关系。在本文中,我们开发了一种克服这些困难的一般方法,通过引入具有边缘和联合尖锐渐近的单个检验的新统计量,并利用它们通过数据分割和对称聚合方案来控制错误发现率(FDR)。我们表明,使用所提出的方法,在几乎最优样本量要求下,可以在保证功率的情况下实现有效的FDR控制。通过大量的数值模拟和实际数据实例进一步说明了该方法的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信