Multivariate Unified Skew-t Distributions And Their Properties

Kesen Wang, Maicon J. Karling, Reinaldo B. Arellano-Valle, Marc G. Genton
{"title":"Multivariate Unified Skew-t Distributions And Their Properties","authors":"Kesen Wang, Maicon J. Karling, Reinaldo B. Arellano-Valle, Marc G. Genton","doi":"arxiv-2311.18294","DOIUrl":null,"url":null,"abstract":"The unified skew-t (SUT) is a flexible parametric multivariate distribution\nthat accounts for skewness and heavy tails in the data. A few of its properties\ncan be found scattered in the literature or in a parameterization that does not\nfollow the original one for unified skew-normal (SUN) distributions, yet a\nsystematic study is lacking. In this work, explicit properties of the\nmultivariate SUT distribution are presented, such as its stochastic\nrepresentations, moments, SUN-scale mixture representation, linear\ntransformation, additivity, marginal distribution, canonical form, quadratic\nform, conditional distribution, change of latent dimensions, Mardia measures of\nmultivariate skewness and kurtosis, and non-identifiability issue. These\nresults are given in a parametrization that reduces to the original SUN\ndistribution as a sub-model, hence facilitating the use of the SUT for\napplications. Several models based on the SUT distribution are provided for\nillustration.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"90 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The unified skew-t (SUT) is a flexible parametric multivariate distribution that accounts for skewness and heavy tails in the data. A few of its properties can be found scattered in the literature or in a parameterization that does not follow the original one for unified skew-normal (SUN) distributions, yet a systematic study is lacking. In this work, explicit properties of the multivariate SUT distribution are presented, such as its stochastic representations, moments, SUN-scale mixture representation, linear transformation, additivity, marginal distribution, canonical form, quadratic form, conditional distribution, change of latent dimensions, Mardia measures of multivariate skewness and kurtosis, and non-identifiability issue. These results are given in a parametrization that reduces to the original SUN distribution as a sub-model, hence facilitating the use of the SUT for applications. Several models based on the SUT distribution are provided for illustration.
多元统一斜-t分布及其性质
统一偏态-t (SUT)是一种灵活的参数多元分布,可以解释数据中的偏态和重尾。它的一些性质可以在文献中发现,或者在不遵循统一斜正态分布(SUN)原始分布的参数化中发现,但缺乏系统的研究。本文给出了多元SUT分布的显式性质,如随机表示、矩、太阳尺度混合表示、线性变换、可加性、边际分布、规范形式、二次形式、条件分布、潜在维数的变化、多元偏度和峰度的马尔地亚测度以及不可辨识问题。这些结果是在参数化中给出的,该参数化将原始的太阳分布作为子模型,从而促进了SUT在应用中的使用。给出了基于SUT分布的几种模型作为说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信