Optimal minimax rate of learning interaction kernels

Xiong Wang, Inbar Seroussi, Fei Lu
{"title":"Optimal minimax rate of learning interaction kernels","authors":"Xiong Wang, Inbar Seroussi, Fei Lu","doi":"arxiv-2311.16852","DOIUrl":null,"url":null,"abstract":"Nonparametric estimation of nonlocal interaction kernels is crucial in\nvarious applications involving interacting particle systems. The inference\nchallenge, situated at the nexus of statistical learning and inverse problems,\ncomes from the nonlocal dependency. A central question is whether the optimal\nminimax rate of convergence for this problem aligns with the rate of\n$M^{-\\frac{2\\beta}{2\\beta+1}}$ in classical nonparametric regression, where $M$\nis the sample size and $\\beta$ represents the smoothness exponent of the radial\nkernel. Our study confirms this alignment for systems with a finite number of\nparticles. We introduce a tamed least squares estimator (tLSE) that attains the optimal\nconvergence rate for a broad class of exchangeable distributions. The tLSE\nbridges the smallest eigenvalue of random matrices and Sobolev embedding. This\nestimator relies on nonasymptotic estimates for the left tail probability of\nthe smallest eigenvalue of the normal matrix. The lower minimax rate is derived\nusing the Fano-Tsybakov hypothesis testing method. Our findings reveal that\nprovided the inverse problem in the large sample limit satisfies a coercivity\ncondition, the left tail probability does not alter the bias-variance tradeoff,\nand the optimal minimax rate remains intact. Our tLSE method offers a\nstraightforward approach for establishing the optimal minimax rate for models\nwith either local or nonlocal dependency.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"91 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.16852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonparametric estimation of nonlocal interaction kernels is crucial in various applications involving interacting particle systems. The inference challenge, situated at the nexus of statistical learning and inverse problems, comes from the nonlocal dependency. A central question is whether the optimal minimax rate of convergence for this problem aligns with the rate of $M^{-\frac{2\beta}{2\beta+1}}$ in classical nonparametric regression, where $M$ is the sample size and $\beta$ represents the smoothness exponent of the radial kernel. Our study confirms this alignment for systems with a finite number of particles. We introduce a tamed least squares estimator (tLSE) that attains the optimal convergence rate for a broad class of exchangeable distributions. The tLSE bridges the smallest eigenvalue of random matrices and Sobolev embedding. This estimator relies on nonasymptotic estimates for the left tail probability of the smallest eigenvalue of the normal matrix. The lower minimax rate is derived using the Fano-Tsybakov hypothesis testing method. Our findings reveal that provided the inverse problem in the large sample limit satisfies a coercivity condition, the left tail probability does not alter the bias-variance tradeoff, and the optimal minimax rate remains intact. Our tLSE method offers a straightforward approach for establishing the optimal minimax rate for models with either local or nonlocal dependency.
学习交互核的最优最小最大速率
非局部相互作用核的非参数估计在涉及相互作用粒子系统的应用中是至关重要的。推理的挑战,位于统计学习和反问题的联系,来自于非局部依赖。一个核心问题是这个问题的最优极大收敛率是否与经典非参数回归中的$M^{-\frac{2\beta}{2\beta+1}}$速率一致,其中$M$是样本量,$\beta$表示径向核的平滑指数。我们的研究证实了粒子数量有限的系统的这种排列。我们引入了一个驯服的最小二乘估计器(tLSE),它对一类广泛的可交换分布获得了最优收敛率。该算法将随机矩阵的最小特征值与Sobolev嵌入连接起来。这个估计依赖于对正态矩阵最小特征值的左尾概率的非渐近估计。使用Fano-Tsybakov假设检验方法推导出较低的极大极小率。我们的研究结果表明,如果大样本极限的逆问题满足强制条件,则左尾概率不会改变偏差-方差权衡,并且最优极大极小率保持不变。我们的tLSE方法为建立具有局部或非局部依赖的模型的最优极大极小率提供了一种直接的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信