On the adaptation of causal forests to manifold data

Yiyi Huo, Yingying Fan, Fang Han
{"title":"On the adaptation of causal forests to manifold data","authors":"Yiyi Huo, Yingying Fan, Fang Han","doi":"arxiv-2311.16486","DOIUrl":null,"url":null,"abstract":"Researchers often hold the belief that random forests are \"the cure to the\nworld's ills\" (Bickel, 2010). But how exactly do they achieve this? Focused on\nthe recently introduced causal forests (Athey and Imbens, 2016; Wager and\nAthey, 2018), this manuscript aims to contribute to an ongoing research trend\ntowards answering this question, proving that causal forests can adapt to the\nunknown covariate manifold structure. In particular, our analysis shows that a\ncausal forest estimator can achieve the optimal rate of convergence for\nestimating the conditional average treatment effect, with the covariate\ndimension automatically replaced by the manifold dimension. These findings\nalign with analogous observations in the realm of deep learning and resonate\nwith the insights presented in Peter Bickel's 2004 Rietz lecture.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"92 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.16486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers often hold the belief that random forests are "the cure to the world's ills" (Bickel, 2010). But how exactly do they achieve this? Focused on the recently introduced causal forests (Athey and Imbens, 2016; Wager and Athey, 2018), this manuscript aims to contribute to an ongoing research trend towards answering this question, proving that causal forests can adapt to the unknown covariate manifold structure. In particular, our analysis shows that a causal forest estimator can achieve the optimal rate of convergence for estimating the conditional average treatment effect, with the covariate dimension automatically replaced by the manifold dimension. These findings align with analogous observations in the realm of deep learning and resonate with the insights presented in Peter Bickel's 2004 Rietz lecture.
因果森林对流形数据的适应性研究
研究人员经常认为随机森林是“治疗世界弊病的良药”(Bickel, 2010)。但他们究竟是如何做到的呢?关注最近引入的因果森林(Athey和Imbens, 2016;Wager和athey, 2018),本文旨在促进正在进行的研究趋势,以回答这个问题,证明因果森林可以适应未知的协变量流形结构。特别是,我们的分析表明,因果森林估计器可以达到预测条件平均处理效果的最佳收敛速度,协变量维数自动被流形维数取代。这些发现与深度学习领域的类似观察结果相一致,并与Peter Bickel在2004年Rietz讲座中提出的见解产生了共鸣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信