Identification and Inference for Synthetic Controls with Confounding

Guido W. Imbens, Davide Viviano
{"title":"Identification and Inference for Synthetic Controls with Confounding","authors":"Guido W. Imbens, Davide Viviano","doi":"arxiv-2312.00955","DOIUrl":null,"url":null,"abstract":"This paper studies inference on treatment effects in panel data settings with\nunobserved confounding. We model outcome variables through a factor model with\nrandom factors and loadings. Such factors and loadings may act as unobserved\nconfounders: when the treatment is implemented depends on time-varying factors,\nand who receives the treatment depends on unit-level confounders. We study the\nidentification of treatment effects and illustrate the presence of a trade-off\nbetween time and unit-level confounding. We provide asymptotic results for\ninference for several Synthetic Control estimators and show that different\nsources of randomness should be considered for inference, depending on the\nnature of confounding. We conclude with a comparison of Synthetic Control\nestimators with alternatives for factor models.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"93 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies inference on treatment effects in panel data settings with unobserved confounding. We model outcome variables through a factor model with random factors and loadings. Such factors and loadings may act as unobserved confounders: when the treatment is implemented depends on time-varying factors, and who receives the treatment depends on unit-level confounders. We study the identification of treatment effects and illustrate the presence of a trade-off between time and unit-level confounding. We provide asymptotic results for inference for several Synthetic Control estimators and show that different sources of randomness should be considered for inference, depending on the nature of confounding. We conclude with a comparison of Synthetic Control estimators with alternatives for factor models.
混杂综合控制的辨识与推理
本文研究了在未观察到的混杂情况下面板数据设置对治疗效果的推断。我们通过一个带有随机因素和负荷的因子模型来模拟结果变量。这些因素和负荷可能作为未观察到的混杂因素:何时实施治疗取决于时变因素,谁接受治疗取决于单位水平的混杂因素。我们研究了治疗效果的识别,并说明了时间和单位水平混杂之间的权衡。我们提供了几个综合控制估计的渐近推断结果,并表明根据混杂的性质,应该考虑不同的随机性来源。最后,我们比较了综合控制估计器与替代因子模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信