$\texttt{ChisholmD.wl}$- Automated rational approximant for bi-variate series

Souvik Bera, Tanay Pathak
{"title":"$\\texttt{ChisholmD.wl}$- Automated rational approximant for bi-variate series","authors":"Souvik Bera, Tanay Pathak","doi":"arxiv-2309.07687","DOIUrl":null,"url":null,"abstract":"The Chisholm rational approximant is a natural generalization to two\nvariables of the well-known single variable Pad\\'e approximant, and has the\nadvantage of reducing to the latter when one of the variables is set equals to\n0. We present, to our knowledge, the first automated Mathematica package to\nevaluate diagonal Chisholm approximants of two variable series. For the moment,\nthe package can only be used to evaluate diagonal approximants i.e. the maximum\npowers of both the variables, in both the numerator and the denominator, is\nequal to some integer $M$. We further modify the original method so as to allow\nus to evaluate the approximants around some general point $(x,y)$ not\nnecessarily $(0,0)$. Using the approximants around general point $(x,y)$,\nallows us to get a better estimate of the result when the point of evaluation\nis far from $(0,0)$. Several examples of the elementary functions have been\nstudied which shows that the approximants can be useful for analytic\ncontinuation and convergence acceleration purposes. We continue our study using\nvarious examples of two variable hypergeometric series,\n$\\mathrm{Li}_{2,2}(x,y)$ etc that arise in particle physics and in the study of\ncritical phenomena in condensed matter physics. The demonstration of the\npackage is discussed in detail and the Mathematica package is provided as an\nancillary file.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.07687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Chisholm rational approximant is a natural generalization to two variables of the well-known single variable Pad\'e approximant, and has the advantage of reducing to the latter when one of the variables is set equals to 0. We present, to our knowledge, the first automated Mathematica package to evaluate diagonal Chisholm approximants of two variable series. For the moment, the package can only be used to evaluate diagonal approximants i.e. the maximum powers of both the variables, in both the numerator and the denominator, is equal to some integer $M$. We further modify the original method so as to allow us to evaluate the approximants around some general point $(x,y)$ not necessarily $(0,0)$. Using the approximants around general point $(x,y)$, allows us to get a better estimate of the result when the point of evaluation is far from $(0,0)$. Several examples of the elementary functions have been studied which shows that the approximants can be useful for analytic continuation and convergence acceleration purposes. We continue our study using various examples of two variable hypergeometric series, $\mathrm{Li}_{2,2}(x,y)$ etc that arise in particle physics and in the study of critical phenomena in condensed matter physics. The demonstration of the package is discussed in detail and the Mathematica package is provided as an ancillary file.
$\texttt{ChisholmD.wl}$-双变量序列的自动有理逼近
Chisholm有理近似是对众所周知的单变量Pad\'e近似的两变量的自然推广,当其中一个变量被设为等于0时,它具有简化为后者的优点。据我们所知,我们提出了第一个自动化的Mathematica软件包来评估两个变量序列的对角线Chisholm近似值。目前,该包只能用于评估对角近似值,即两个变量的最大幂,在分子和分母中,等于某个整数$M$。我们进一步修改了原方法,使其可以求出一般点$(x,y)$的近似值,而不一定是$(0,0)$。使用一般点$(x,y)$附近的近似值,当计算点远离$(0,0)$时,我们可以更好地估计结果。对初等函数的几个例子进行了研究,结果表明,近似值可以用于解析延拓和收敛加速目的。我们继续使用在粒子物理和凝聚态物理的临界现象研究中出现的两个变量超几何级数,$\ mathm {Li}_{2,2}(x,y)$等的各种例子进行研究。详细讨论了软件包的演示,并将Mathematica软件包作为辅助文件提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信