Mathematical Modelling and a Numerical Solution for High Precision Satellite Ephemeris Determination

Aravind Gundakaram, Abhirath Sangala, Aditya Sai Ellendula, Prachi Kansal, Lanii Lakshitaa, Suchir Reddy Punuru, Nethra Naveen, Sanjitha Jaggumantri
{"title":"Mathematical Modelling and a Numerical Solution for High Precision Satellite Ephemeris Determination","authors":"Aravind Gundakaram, Abhirath Sangala, Aditya Sai Ellendula, Prachi Kansal, Lanii Lakshitaa, Suchir Reddy Punuru, Nethra Naveen, Sanjitha Jaggumantri","doi":"arxiv-2311.15028","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a high-precision satellite orbit determination\nmodel for satellites orbiting the Earth. Solving this model entails numerically\nintegrating the differential equation of motion governing a two-body system,\nemploying Fehlberg's formulation and the Runge-Kutta class of embedded\nintegrators with adaptive stepsize control. Relevant primary perturbing forces\nincluded in this mathematical model are the full force gravitational field\nmodel, Earth's atmospheric drag, third body gravitational effects and solar\nradiation pressure. Development of the high-precision model required accounting\nfor the perturbing influences of Earth radiation pressure, Earth tides and\nrelativistic effects. The model is then implemented to obtain a high-fidelity\nEarth orbiting satellite propagator, namely the Satellite Ephemeris Determiner\n(SED), which is comparable to the popular High Precision Orbit Propagator\n(HPOP). The architecture of SED, the methodology employed, and the numerical\nresults obtained are presented.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"14 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.15028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a high-precision satellite orbit determination model for satellites orbiting the Earth. Solving this model entails numerically integrating the differential equation of motion governing a two-body system, employing Fehlberg's formulation and the Runge-Kutta class of embedded integrators with adaptive stepsize control. Relevant primary perturbing forces included in this mathematical model are the full force gravitational field model, Earth's atmospheric drag, third body gravitational effects and solar radiation pressure. Development of the high-precision model required accounting for the perturbing influences of Earth radiation pressure, Earth tides and relativistic effects. The model is then implemented to obtain a high-fidelity Earth orbiting satellite propagator, namely the Satellite Ephemeris Determiner (SED), which is comparable to the popular High Precision Orbit Propagator (HPOP). The architecture of SED, the methodology employed, and the numerical results obtained are presented.
高精度卫星星历确定的数学模型和数值解
本文建立了一种高精度的地球轨道卫星定轨模型。求解该模型需要对控制两体系统的运动微分方程进行数值积分,采用Fehlberg公式和具有自适应步长控制的龙格-库塔类嵌入积分器。该数学模型包括全力引力场模型、地球大气阻力、第三体引力效应和太阳辐射压力。高精度模型的发展需要考虑地球辐射压力、地球潮汐和相对论效应的扰动影响。然后对该模型进行实现,得到了一种与目前流行的高精度轨道传播器(High Precision Orbit propagator, HPOP)相当的高保真的地球轨道卫星传播器,即卫星星历确定器(satellite Ephemeris Determiner, SED)。介绍了SED的体系结构、采用的方法和得到的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信