An Efficient Framework for Global Non-Convex Polynomial Optimization with Nonlinear Polynomial Constraints

Mitchell Tong Harris, Pierre-David Letourneau, Dalton Jones, M. Harper Langston
{"title":"An Efficient Framework for Global Non-Convex Polynomial Optimization with Nonlinear Polynomial Constraints","authors":"Mitchell Tong Harris, Pierre-David Letourneau, Dalton Jones, M. Harper Langston","doi":"arxiv-2311.02037","DOIUrl":null,"url":null,"abstract":"We present an efficient framework for solving constrained global non-convex\npolynomial optimization problems. We prove the existence of an equivalent\nnonlinear reformulation of such problems that possesses essentially no spurious\nlocal minima. We show through numerical experiments that polynomial scaling in\ndimension and degree is achievable for computing the optimal value and location\nof previously intractable global constrained polynomial optimization problems\nin high dimension.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.02037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an efficient framework for solving constrained global non-convex polynomial optimization problems. We prove the existence of an equivalent nonlinear reformulation of such problems that possesses essentially no spurious local minima. We show through numerical experiments that polynomial scaling in dimension and degree is achievable for computing the optimal value and location of previously intractable global constrained polynomial optimization problems in high dimension.
具有非线性多项式约束的全局非凸多项式优化的有效框架
我们提出了一个求解受限全局非凸多项式优化问题的有效框架。我们证明了这类问题的等效非线性重表述的存在性,它基本上不具有伪局部极小值。我们通过数值实验证明,对于先前难以解决的高维全局约束多项式优化问题的最优值和最优位置的计算,多项式标度和度是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信