An Efficient Framework for Global Non-Convex Polynomial Optimization over the Hypercube

Pierre-David Letourneau, Dalton Jones, Matthew Morse, M. Harper Langston
{"title":"An Efficient Framework for Global Non-Convex Polynomial Optimization over the Hypercube","authors":"Pierre-David Letourneau, Dalton Jones, Matthew Morse, M. Harper Langston","doi":"arxiv-2308.16731","DOIUrl":null,"url":null,"abstract":"We present a novel efficient theoretical and numerical framework for solving\nglobal non-convex polynomial optimization problems. We analytically demonstrate\nthat such problems can be efficiently reformulated using a non-linear objective\nover a convex set; further, these reformulated problems possess no spurious\nlocal minima (i.e., every local minimum is a global minimum). We introduce an\nalgorithm for solving these resulting problems using the augmented Lagrangian\nand the method of Burer and Monteiro. We show through numerical experiments\nthat polynomial scaling in dimension and degree is achievable for computing the\noptimal value and location of previously intractable global polynomial\noptimization problems in high dimension.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"16 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.16731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel efficient theoretical and numerical framework for solving global non-convex polynomial optimization problems. We analytically demonstrate that such problems can be efficiently reformulated using a non-linear objective over a convex set; further, these reformulated problems possess no spurious local minima (i.e., every local minimum is a global minimum). We introduce an algorithm for solving these resulting problems using the augmented Lagrangian and the method of Burer and Monteiro. We show through numerical experiments that polynomial scaling in dimension and degree is achievable for computing the optimal value and location of previously intractable global polynomial optimization problems in high dimension.
超立方体上全局非凸多项式优化的一个有效框架
本文提出了一种新的求解全局非凸多项式优化问题的理论和数值框架。我们解析地证明了这类问题可以用凸集上的非线性目标有效地重新表述;此外,这些重新表述的问题不具有虚假的局部最小值(即,每个局部最小值都是全局最小值)。我们介绍了利用增广拉格朗日和Burer和Monteiro的方法来解决这些问题的算法。我们通过数值实验证明,多项式的维数和阶数缩放对于计算高维全局多项式优化问题的最优值和位置是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信