Exact Combinatorial Optimization with Temporo-Attentional Graph Neural Networks

Mehdi Seyfi, Amin Banitalebi-Dehkordi, Zirui Zhou, Yong Zhang
{"title":"Exact Combinatorial Optimization with Temporo-Attentional Graph Neural Networks","authors":"Mehdi Seyfi, Amin Banitalebi-Dehkordi, Zirui Zhou, Yong Zhang","doi":"arxiv-2311.13843","DOIUrl":null,"url":null,"abstract":"Combinatorial optimization finds an optimal solution within a discrete set of\nvariables and constraints. The field has seen tremendous progress both in\nresearch and industry. With the success of deep learning in the past decade, a\nrecent trend in combinatorial optimization has been to improve state-of-the-art\ncombinatorial optimization solvers by replacing key heuristic components with\nmachine learning (ML) models. In this paper, we investigate two essential\naspects of machine learning algorithms for combinatorial optimization: temporal\ncharacteristics and attention. We argue that for the task of variable selection\nin the branch-and-bound (B&B) algorithm, incorporating the temporal information\nas well as the bipartite graph attention improves the solver's performance. We\nsupport our claims with intuitions and numerical results over several standard\ndatasets used in the literature and competitions. Code is available at:\nhttps://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=047c6cf2-8463-40d7-b92f-7b2ca998e935","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.13843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combinatorial optimization finds an optimal solution within a discrete set of variables and constraints. The field has seen tremendous progress both in research and industry. With the success of deep learning in the past decade, a recent trend in combinatorial optimization has been to improve state-of-the-art combinatorial optimization solvers by replacing key heuristic components with machine learning (ML) models. In this paper, we investigate two essential aspects of machine learning algorithms for combinatorial optimization: temporal characteristics and attention. We argue that for the task of variable selection in the branch-and-bound (B&B) algorithm, incorporating the temporal information as well as the bipartite graph attention improves the solver's performance. We support our claims with intuitions and numerical results over several standard datasets used in the literature and competitions. Code is available at: https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=047c6cf2-8463-40d7-b92f-7b2ca998e935
时间-注意力图神经网络的精确组合优化
组合优化在变量和约束的离散集合中找到最优解。这一领域在研究和工业上都取得了巨大的进步。随着深度学习在过去十年中的成功,组合优化的一个最新趋势是通过用机器学习(ML)模型取代关键的启发式组件来改进最先进的组合优化求解器。在本文中,我们研究了用于组合优化的机器学习算法的两个基本方面:时间特征和注意力。对于分支定界(B&B)算法中的变量选择任务,我们认为结合时间信息和二部图注意可以提高求解器的性能。我们用文献和竞赛中使用的几个标准数据集的直觉和数值结果来支持我们的主张。代码可从https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=047c6cf2-8463-40d7-b92f-7b2ca998e935获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信