{"title":"Modular parametrization as Polyakov path integral: cases with CM elliptic curves as target spaces","authors":"Satoshi Kondo, Taizan Watari","doi":"10.4310/cntp.2022.v16.n2.a3","DOIUrl":null,"url":null,"abstract":"For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"39 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n2.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.