The cohomology of free loop spaces of rank $2$ flag manifolds

IF 0.8 4区 数学 Q2 MATHEMATICS
Matthew Burfitt, Jelena Grbić
{"title":"The cohomology of free loop spaces of rank $2$ flag manifolds","authors":"Matthew Burfitt, Jelena Grbić","doi":"10.4310/hha.2023.v25.n2.a15","DOIUrl":null,"url":null,"abstract":"By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\\mathit{Spin}(4)/T^2$, $\\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":"20 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a15","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\mathit{Spin}(4)/T^2$, $\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.
秩$2$标志流形的自由循环空间的上同调
通过将Gröbner基理论应用于谱序列代数,我们开发了一种新的计算方法,适用于任何Leray-Serre谱序列,其中基空间的上同调是有限生成多项式代数的商。我们通过推导标志流形的自由环空间的上同调来证明这一过程,对以前关于自由环空间拓扑的知识进行了重要的扩展。完备标志流形是李群与其最大环面之商。标志流形的秩是李群的最大环面的维数。等级2美元完成标志集合管是SU (3) / T ^ 2美元,Sp (2) / T ^ 2美元,美元\ mathit{旋转}(4)/ T ^ 2美元,美元\ mathit{旋转}(5)/ T ^ 2美元和G_2 / T ^ 2美元。本文计算了秩$2$完备标志流形的自由环空间的上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信