Lifespan functors and natural dualities in persistent homology

Pub Date : 2023-11-22 DOI:10.4310/hha.2023.v25.n2.a13
Ulrich Bauer, Maximilian Schmahl
{"title":"Lifespan functors and natural dualities in persistent homology","authors":"Ulrich Bauer, Maximilian Schmahl","doi":"10.4310/hha.2023.v25.n2.a13","DOIUrl":null,"url":null,"abstract":"We introduce lifespan functors, which are endofunctors on the category of persistence modules that filter out intervals from barcodes according to their boundedness properties. They can be used to classify injective and projective objects in the category of barcodes and the category of pointwise finite-dimensional persistence modules. They also naturally appear in duality results for absolute and relative versions of persistent (co)homology, generalizing previous results in terms of barcodes. Due to their functoriality, we can apply these results to morphisms in persistent homology that are induced by morphisms between filtrations. This lays the groundwork for the efficient computation of barcodes for images, kernels, and co-kernels of such morphisms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce lifespan functors, which are endofunctors on the category of persistence modules that filter out intervals from barcodes according to their boundedness properties. They can be used to classify injective and projective objects in the category of barcodes and the category of pointwise finite-dimensional persistence modules. They also naturally appear in duality results for absolute and relative versions of persistent (co)homology, generalizing previous results in terms of barcodes. Due to their functoriality, we can apply these results to morphisms in persistent homology that are induced by morphisms between filtrations. This lays the groundwork for the efficient computation of barcodes for images, kernels, and co-kernels of such morphisms.
分享
查看原文
持久同源中的寿命函子与自然对偶
我们引入了寿命函子,它是持久性模块类别上的内函子,根据它们的有界性从条形码中过滤出间隔。它们可以用于对条形码类别和点向有限维持久模块类别中的射射和投影对象进行分类。它们也自然地出现在持久(co)同源的绝对和相对版本的对偶结果中,用条形码推广了以前的结果。由于它们的功能性,我们可以将这些结果应用于由过滤之间的态射引起的持久同构中的态射。这为有效计算图像条形码、核和此类态射的协核奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信