On bialgebras, comodules, descent data and Thom spectra in $\infty$-categories

Pub Date : 2023-11-01 DOI:10.4310/hha.2023.v25.n2.a10
Jonathan Beardsley
{"title":"On bialgebras, comodules, descent data and Thom spectra in $\\infty$-categories","authors":"Jonathan Beardsley","doi":"10.4310/hha.2023.v25.n2.a10","DOIUrl":null,"url":null,"abstract":"This paper establishes several results for coalgebraic structure in $\\infty$-categories, specifically with connections to the spectral noncommutative geometry of cobordism theories. We prove that the categories of comodules and modules over a bialgebra always admit suitably structured monoidal structures in which the tensor product is taken in the ambient category (as opposed to a relative (co)tensor product over the underlying algebra or coalgebra of the bialgebra). We give two examples of higher coalgebraic structure: first, following Hess we show that for a map of $\\mathbb{E}_n$-ring spectra $\\varphi : A \\to B$, the associated $\\infty$-category of descent data is equivalent to the $\\infty$-category of comodules over $B \\otimes_A B$, the so-called descent coring; secondly, we show that Thom spectra are canonically equipped with a highly structured comodule structure which is equivalent to the $\\infty$-categorical Thom diagonal of Ando, Blumberg, Gepner, Hopkins and Rezk (which we describe explicitly) and that this highly structured diagonal decomposes the Thom isomorphism for an oriented Thom spectrum in the expected way indicating that Thom spectra are good examples of spectral noncommutative torsors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper establishes several results for coalgebraic structure in $\infty$-categories, specifically with connections to the spectral noncommutative geometry of cobordism theories. We prove that the categories of comodules and modules over a bialgebra always admit suitably structured monoidal structures in which the tensor product is taken in the ambient category (as opposed to a relative (co)tensor product over the underlying algebra or coalgebra of the bialgebra). We give two examples of higher coalgebraic structure: first, following Hess we show that for a map of $\mathbb{E}_n$-ring spectra $\varphi : A \to B$, the associated $\infty$-category of descent data is equivalent to the $\infty$-category of comodules over $B \otimes_A B$, the so-called descent coring; secondly, we show that Thom spectra are canonically equipped with a highly structured comodule structure which is equivalent to the $\infty$-categorical Thom diagonal of Ando, Blumberg, Gepner, Hopkins and Rezk (which we describe explicitly) and that this highly structured diagonal decomposes the Thom isomorphism for an oriented Thom spectrum in the expected way indicating that Thom spectra are good examples of spectral noncommutative torsors.
分享
查看原文
论$\infty$ -范畴中的双代数、模、下降数据和Thom谱
本文建立了$\infty$ -范畴中共代数结构的几个结果,特别是与共数论的谱非交换几何的联系。我们证明了双代数上的模和模的范畴总是允许适当结构的单面结构,其中张量积在周围范畴中(相对于在双代数的基础代数或协代数上的相对(co)张量积)。我们给出了两个更高共代数结构的例子:首先,在Hess之后,我们证明了对于$\mathbb{E}_n$ -环谱$\varphi : A \to B$的映射,相关的$\infty$ -类下降数据等价于$B \otimes_A B$上的$\infty$ -类模,即所谓的下降取心;其次,我们证明了Thom谱通常具有一个高度结构化的模结构,该结构相当于Ando, Blumberg, Gepner, Hopkins和Rezk的$\infty$ -分类Thom对角线(我们明确描述了),并且这个高度结构化的对角线以预期的方式分解了定向Thom谱的Thom同构,表明Thom谱是谱非交换环量的好例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信