Zig-zag modules: cosheaves and $k$-theory

Pub Date : 2023-11-01 DOI:10.4310/hha.2023.v25.n2.a11
Ryan Grady, Anna Schenfisch
{"title":"Zig-zag modules: cosheaves and $k$-theory","authors":"Ryan Grady, Anna Schenfisch","doi":"10.4310/hha.2023.v25.n2.a11","DOIUrl":null,"url":null,"abstract":"Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig‑zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig‑zag modules and the combinatorial entrance path category on stratified $\\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig‑zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig‑zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig‑zag modules and the combinatorial entrance path category on stratified $\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig‑zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.
分享
查看原文
z形模块:cosheaves和$k$-理论
持久模块在分层空间和可构造的cosheave设置中有一个天然的家。在本文中,我们首先为常见的数据驱动持久性模块(即由之形过滤(包括单调过滤)产生的模块)和增强持久性模块(对瞬时事件的数据进行编码)提供显式可构造的协轴。然后,我们在分层$\mathbb{R}$上确定了一个特定的z形模块概念与组合入口路径类别之间的等价类别。最后,我们计算了广义之字形模的代数$K$-理论,并描述了Bubenik和Elchesen所描述的持久图的一元欧拉曲线和$K_0$的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信