Homology transfer products on free loop spaces: orientation reversal on spheres

IF 0.8 4区 数学 Q2 MATHEMATICS
Philippe Kupper
{"title":"Homology transfer products on free loop spaces: orientation reversal on spheres","authors":"Philippe Kupper","doi":"10.4310/hha.2023.v25.n2.a7","DOIUrl":null,"url":null,"abstract":"We consider the space $\\Lambda M := H^1 (S^1, M)$ of loops of Sobolev class $H^1$ of a compact smooth manifold $M$, the so-called free loop space of $M$. We take quotients $\\Lambda M / G$ where $G$ is a finite subgroup of $O(2)$ acting by linear reparametrization of $S^1$. We use the existence of transfer maps $\\operatorname{tr} : H_\\ast (\\Lambda M / G) \\to H_\\ast (\\Lambda M)$ to define a homology product on $\\Lambda M / G$ via the Chas–Sullivan loop product. We call this product $P_G$ the transfer product. The involution $\\vartheta : \\Lambda M \\to \\Lambda M$ which reverses orientation, $\\vartheta ( \\gamma (t) := \\gamma (1-t)$, is of particular interest to us. We compute $H_\\ast (\\Lambda S^n / \\vartheta ; \\mathbb{Q}), n \\gt 2$, and the product\\[P_\\vartheta : H_i (\\Lambda S^n / \\vartheta ; \\mathbb{Q}) \\times H_j (\\Lambda S^n / \\vartheta ; \\mathbb{Q)} \\to H_{i+j-n} (\\Lambda Sn/\\vartheta ; \\mathbb{Q})\\]associated to orientation reversal. Rationally P\\vartheta can be realized “geometrically” using the concatenation of equivalence classes of loops. There is a qualitative difference between the homology of $\\Lambda S^n / \\vartheta$ and the homology of $\\Lambda S^n / G$ when $G \\subset S^1 \\subset O(2)$ does not “contain” the orientation reversal. This might be interesting with respect to possible differences in the number of closed geodesics between non-reversible and reversible Finsler metrics on $S^n$, the latter might always be infinite.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the space $\Lambda M := H^1 (S^1, M)$ of loops of Sobolev class $H^1$ of a compact smooth manifold $M$, the so-called free loop space of $M$. We take quotients $\Lambda M / G$ where $G$ is a finite subgroup of $O(2)$ acting by linear reparametrization of $S^1$. We use the existence of transfer maps $\operatorname{tr} : H_\ast (\Lambda M / G) \to H_\ast (\Lambda M)$ to define a homology product on $\Lambda M / G$ via the Chas–Sullivan loop product. We call this product $P_G$ the transfer product. The involution $\vartheta : \Lambda M \to \Lambda M$ which reverses orientation, $\vartheta ( \gamma (t) := \gamma (1-t)$, is of particular interest to us. We compute $H_\ast (\Lambda S^n / \vartheta ; \mathbb{Q}), n \gt 2$, and the product\[P_\vartheta : H_i (\Lambda S^n / \vartheta ; \mathbb{Q}) \times H_j (\Lambda S^n / \vartheta ; \mathbb{Q)} \to H_{i+j-n} (\Lambda Sn/\vartheta ; \mathbb{Q})\]associated to orientation reversal. Rationally P\vartheta can be realized “geometrically” using the concatenation of equivalence classes of loops. There is a qualitative difference between the homology of $\Lambda S^n / \vartheta$ and the homology of $\Lambda S^n / G$ when $G \subset S^1 \subset O(2)$ does not “contain” the orientation reversal. This might be interesting with respect to possible differences in the number of closed geodesics between non-reversible and reversible Finsler metrics on $S^n$, the latter might always be infinite.
自由环空间上的同调转移积:球面上的取向反转
我们考虑紧致光滑流形$M$的Sobolev类循环$H^1$的空间$\Lambda M := H^1 (S^1, M)$,即$M$的自由循环空间。我们取商$\Lambda M / G$,其中$G$是$O(2)$的一个有限子群,由$S^1$的线性重参数化作用。我们利用迁移映射$\operatorname{tr} : H_\ast (\Lambda M / G) \to H_\ast (\Lambda M)$的存在性,通过查斯-苏利文环积在$\Lambda M / G$上定义了一个同源积。我们称这个产品为$P_G$传递产品。反转方向的对合$\vartheta : \Lambda M \to \Lambda M$$\vartheta ( \gamma (t) := \gamma (1-t)$对我们来说特别有趣。我们计算$H_\ast (\Lambda S^n / \vartheta ; \mathbb{Q}), n \gt 2$和与方向反转相关的乘积\[P_\vartheta : H_i (\Lambda S^n / \vartheta ; \mathbb{Q}) \times H_j (\Lambda S^n / \vartheta ; \mathbb{Q)} \to H_{i+j-n} (\Lambda Sn/\vartheta ; \mathbb{Q})\]。合理地,P \vartheta可以通过循环等价类的串联“几何地”实现。当$G \subset S^1 \subset O(2)$不“包含”取向反转时,$\Lambda S^n / \vartheta$的同源性与$\Lambda S^n / G$的同源性有质的区别。对于在$S^n$上的不可逆芬斯勒度量和可逆芬斯勒度量之间的封闭测地线数目的可能差异,这可能很有趣,后者可能总是无限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信