{"title":"$1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups","authors":"Claudio Quadrelli","doi":"10.4310/hha.2022.v24.n2.a3","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime. A pro‑$p$ group $G$ is said to be $1$-smooth if it can be endowed with a homomorphism of pro‑$p$ groups of the form $G \\to 1 + p \\mathbb{Z}_p$ satisfying a formal version of Hilbert 90. By Kummer theory, maximal pro‑$p$ Galois groups of fields containing a root of $1$ of order $p$, together with the cyclotomic character, are $1$-smooth. We prove that a finitely generated padic analytic pro‑$p$ group is $1$-smooth if, and only if, it occurs as the maximal pro‑$p$ Galois group of a field containing a root of $1$ of order $p$. This gives a positive answer to De Clercq–Florence’s “Smoothness Conjecture” — which states that the surjectivity of the norm residue homomorphism (i.e., the “surjective half” of the Bloch–Kato Conjecture) follows from $1$-smoothness — for the class of finitely generated $p$-adic analytic pro‑$p$ groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $p$ be a prime. A pro‑$p$ group $G$ is said to be $1$-smooth if it can be endowed with a homomorphism of pro‑$p$ groups of the form $G \to 1 + p \mathbb{Z}_p$ satisfying a formal version of Hilbert 90. By Kummer theory, maximal pro‑$p$ Galois groups of fields containing a root of $1$ of order $p$, together with the cyclotomic character, are $1$-smooth. We prove that a finitely generated padic analytic pro‑$p$ group is $1$-smooth if, and only if, it occurs as the maximal pro‑$p$ Galois group of a field containing a root of $1$ of order $p$. This gives a positive answer to De Clercq–Florence’s “Smoothness Conjecture” — which states that the surjectivity of the norm residue homomorphism (i.e., the “surjective half” of the Bloch–Kato Conjecture) follows from $1$-smoothness — for the class of finitely generated $p$-adic analytic pro‑$p$ groups.