Profile reduction of folded transmitarray antenna using multiple feeders

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Frequenz Pub Date : 2023-11-17 DOI:10.1515/freq-2023-0174
Guowei Li, Yuehe Ge, Zhizhang (David) Chen
{"title":"Profile reduction of folded transmitarray antenna using multiple feeders","authors":"Guowei Li, Yuehe Ge, Zhizhang (David) Chen","doi":"10.1515/freq-2023-0174","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel design for a high-gain, low-profile quad-feed folded transmitarray antenna (FTA) to enable a more compact system. The proposed antenna system consists of a transmitarray, a reflectarray, and four identical planar microstrip U-slot patch antennas placed on the same surface of the reflectarray with an adjacent distance greater than 1<jats:italic>λ</jats:italic>. To compare the effectiveness of our design, we developed three different antenna array systems with the same aperture size: a single-feed transmitarray antenna (TA) system, the proposed quad-feed FTA system, and a single-feed FTA system. Our experimental results demonstrate that employing four symmetrical feeders with an adjacent distance of 3.2<jats:italic>λ</jats:italic> effectively reduces the height by about 76.7 % in comparison to the height of a single-feed TA, and by 30 % when compared to the height of a single-feed FTA. We also present the design, fabrication, and testing of a prototype of the proposed quad-feed FTA operating in the Ku-band. The measured results of the prototype confirm the effectiveness of our design.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"36 7","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0174","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel design for a high-gain, low-profile quad-feed folded transmitarray antenna (FTA) to enable a more compact system. The proposed antenna system consists of a transmitarray, a reflectarray, and four identical planar microstrip U-slot patch antennas placed on the same surface of the reflectarray with an adjacent distance greater than 1λ. To compare the effectiveness of our design, we developed three different antenna array systems with the same aperture size: a single-feed transmitarray antenna (TA) system, the proposed quad-feed FTA system, and a single-feed FTA system. Our experimental results demonstrate that employing four symmetrical feeders with an adjacent distance of 3.2λ effectively reduces the height by about 76.7 % in comparison to the height of a single-feed TA, and by 30 % when compared to the height of a single-feed FTA. We also present the design, fabrication, and testing of a prototype of the proposed quad-feed FTA operating in the Ku-band. The measured results of the prototype confirm the effectiveness of our design.
使用多个馈线的折叠发射阵列天线的轮廓减小
在本文中,我们介绍了一种高增益,低轮廓四馈源折叠发射阵列天线(FTA)的新设计,以实现更紧凑的系统。该天线系统由一个发射阵列、一个反射阵列和四个相同的平面微带u槽贴片天线组成,这些天线放置在反射阵列的同一表面上,相邻距离大于1λ。为了比较我们设计的有效性,我们开发了三种具有相同孔径大小的不同天线阵列系统:单馈源发射阵列天线(TA)系统,所提出的四馈源FTA系统和单馈源FTA系统。实验结果表明,采用四个相邻距离为3.2λ的对称馈线,与单馈线TA的高度相比,有效地降低了约76.7%的高度,与单馈线FTA的高度相比,有效地降低了30%的高度。我们还介绍了在ku波段工作的四馈自由贸易协定原型的设计、制造和测试。样机的实测结果验证了设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信