{"title":"An accelerated and robust algorithm for ant colony optimization in continuous functions","authors":"de Freitas, Jairo G., Yamanaka, Keiji","doi":"10.1186/s13173-021-00116-8","DOIUrl":null,"url":null,"abstract":"There is a wide variety of computational methods used for solving optimization problems. Among these, there are various strategies that are derived from the concept of ant colony optimization (ACO). However, the great majority of these methods are limited-range-search algorithms, that is, they find the optimal solution, as long as the domain provided contains this solution. This becomes a limitation, due to the fact that it does not allow these algorithms to be applied successfully to real-world problems, as in the real world, it is not always possible to determine with certainty the correct domain. The article proposes the use of a broad-range search algorithm, that is, that seeks the optimal solution, with success most of the time, even if the initial domain provided does not contain this solution, as the initial domain provided will be adjusted until it finds a domain that contains the solution. This algorithm called ARACO, derived from RACO, makes for the obtaining of better results possible, through strategies that accelerate the parameters responsible for adjusting the supplied domain at opportune moments and, in case there is a stagnation of the algorithm, expansion of the domain around the best solution found to prevent the algorithm becoming trapped in a local minimum. Through these strategies, ARACO obtains better results than its predecessors, in relation to the number of function evaluations necessary to find the optimal solution, in addition to its 100% success rate in practically all the tested functions, thus demonstrating itself as being a high performance and reliable algorithm. The algorithm has been tested on some classic benchmark functions and also on the benchmark functions of the IEEE Congress of Evolutionary Computation Benchmark Test Functions (CEC 2019 100-Digit Challenge).","PeriodicalId":39760,"journal":{"name":"Journal of the Brazilian Computer Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13173-021-00116-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
There is a wide variety of computational methods used for solving optimization problems. Among these, there are various strategies that are derived from the concept of ant colony optimization (ACO). However, the great majority of these methods are limited-range-search algorithms, that is, they find the optimal solution, as long as the domain provided contains this solution. This becomes a limitation, due to the fact that it does not allow these algorithms to be applied successfully to real-world problems, as in the real world, it is not always possible to determine with certainty the correct domain. The article proposes the use of a broad-range search algorithm, that is, that seeks the optimal solution, with success most of the time, even if the initial domain provided does not contain this solution, as the initial domain provided will be adjusted until it finds a domain that contains the solution. This algorithm called ARACO, derived from RACO, makes for the obtaining of better results possible, through strategies that accelerate the parameters responsible for adjusting the supplied domain at opportune moments and, in case there is a stagnation of the algorithm, expansion of the domain around the best solution found to prevent the algorithm becoming trapped in a local minimum. Through these strategies, ARACO obtains better results than its predecessors, in relation to the number of function evaluations necessary to find the optimal solution, in addition to its 100% success rate in practically all the tested functions, thus demonstrating itself as being a high performance and reliable algorithm. The algorithm has been tested on some classic benchmark functions and also on the benchmark functions of the IEEE Congress of Evolutionary Computation Benchmark Test Functions (CEC 2019 100-Digit Challenge).
期刊介绍:
JBCS is a formal quarterly publication of the Brazilian Computer Society. It is a peer-reviewed international journal which aims to serve as a forum to disseminate innovative research in all fields of computer science and related subjects. Theoretical, practical and experimental papers reporting original research contributions are welcome, as well as high quality survey papers. The journal is open to contributions in all computer science topics, computer systems development or in formal and theoretical aspects of computing, as the list of topics below is not exhaustive. Contributions will be considered for publication in JBCS if they have not been published previously and are not under consideration for publication elsewhere.