Estimating DSGE Models: Recent Advances and Future Challenges

IF 6.8 2区 经济学 Q1 ECONOMICS
Jesús Fernández-Villaverde,Pablo A. Guerrón-Quintana
{"title":"Estimating DSGE Models: Recent Advances and Future Challenges","authors":"Jesús Fernández-Villaverde,Pablo A. Guerrón-Quintana","doi":"10.1146/annurev-economics-081020-044812","DOIUrl":null,"url":null,"abstract":"We review the current state of the estimation of dynamic stochastic general equilibrium (DSGE) models. After introducing a general framework for dealing with DSGE models, the state-space representation, we discuss how to evaluate moments or the likelihood function implied by such a structure. We discuss, in varying degrees of detail, recent advances in the field, such as the tempered particle filter, approximated Bayesian computation, Hamiltonian Monte Carlo, variational inference, and machine learning. These methods show much promise but have not been fully explored by the DSGE community yet. We conclude by outlining three future challenges for this line of research.","PeriodicalId":47891,"journal":{"name":"Annual Review of Economics","volume":"25 4","pages":"229-252"},"PeriodicalIF":6.8000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1146/annurev-economics-081020-044812","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We review the current state of the estimation of dynamic stochastic general equilibrium (DSGE) models. After introducing a general framework for dealing with DSGE models, the state-space representation, we discuss how to evaluate moments or the likelihood function implied by such a structure. We discuss, in varying degrees of detail, recent advances in the field, such as the tempered particle filter, approximated Bayesian computation, Hamiltonian Monte Carlo, variational inference, and machine learning. These methods show much promise but have not been fully explored by the DSGE community yet. We conclude by outlining three future challenges for this line of research.
估计DSGE模型:最新进展和未来挑战
综述了动态随机一般均衡(DSGE)模型估计的研究现状。在介绍了处理DSGE模型的一般框架,即状态空间表示之后,我们讨论了如何评估这种结构所隐含的矩或似然函数。我们在不同程度上详细讨论了该领域的最新进展,如回火粒子滤波、近似贝叶斯计算、哈密顿蒙特卡罗、变分推理和机器学习。这些方法显示出很大的希望,但还没有被DSGE社区充分探索。最后,我们概述了这一研究领域未来面临的三个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.70
自引率
3.60%
发文量
34
期刊介绍: The Annual Review of Economics covers significant developments in the field of economics, including macroeconomics and money; microeconomics, including economic psychology; international economics; public finance; health economics; education; economic growth and technological change; economic development; social economics, including culture, institutions, social interaction, and networks; game theory, political economy, and social choice; and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信