A non-equilibrium multi-component model with miscible conditions

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Jean Bussac
{"title":"A non-equilibrium multi-component model with miscible conditions","authors":"Jean Bussac","doi":"10.4310/cms.2023.v21.n8.a6","DOIUrl":null,"url":null,"abstract":"This paper concerns the study of a full non-equilibrium model for a compressible mixture of any number of phases. Miscible conditions are considered in one phase, which lead to non-symmetric constraints on the statistical fractions. These models are subject to the choice of interfacial and source terms. We show that under a standard assumption on the interfacial velocity, the interfacial pressures are uniquely defined. The model is hyperbolic and symmetrizable under nonresonance conditions. Classes of entropy-consistent source terms are then proposed.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"76 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2023.v21.n8.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the study of a full non-equilibrium model for a compressible mixture of any number of phases. Miscible conditions are considered in one phase, which lead to non-symmetric constraints on the statistical fractions. These models are subject to the choice of interfacial and source terms. We show that under a standard assumption on the interfacial velocity, the interfacial pressures are uniquely defined. The model is hyperbolic and symmetrizable under nonresonance conditions. Classes of entropy-consistent source terms are then proposed.
具有混相条件的非平衡多组分模型
本文研究了任意相数的可压缩混合物的完全非平衡模型。在一个相中考虑混相条件,导致统计分数的非对称约束。这些模型取决于接口和源项的选择。我们证明了在关于界面速度的标准假设下,界面压力是唯一定义的。该模型在非共振条件下是双曲的和对称的。然后提出了熵一致源项的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信