{"title":"The Neumann boundary condition for the two-dimensional Lax–Wendroff scheme","authors":"Antoine Benoit, Jean-François Coulombel","doi":"10.4310/cms.2023.v21.n8.a1","DOIUrl":null,"url":null,"abstract":"We study the stability of the two-dimensional Lax–Wendroff scheme with a stabilizer that approximates solutions to the transport equation. The problem is first analyzed in the whole space in order to show that the so-called energy method yields an optimal stability criterion for this finite difference scheme. We then deal with the case of a half-space when the transport operator is outgoing. At the numerical level, we enforce the Neumann extrapolation boundary condition and show that the corresponding scheme is stable. Eventually we analyze the case of a quarter-space when the transport operator is outgoing with respect to both sides. We then enforce the Neumann extrapolation boundary condition on each side of the boundary and propose an extrapolation boundary condition at the numerical corner in order to maintain stability for the whole numerical scheme.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2023.v21.n8.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the stability of the two-dimensional Lax–Wendroff scheme with a stabilizer that approximates solutions to the transport equation. The problem is first analyzed in the whole space in order to show that the so-called energy method yields an optimal stability criterion for this finite difference scheme. We then deal with the case of a half-space when the transport operator is outgoing. At the numerical level, we enforce the Neumann extrapolation boundary condition and show that the corresponding scheme is stable. Eventually we analyze the case of a quarter-space when the transport operator is outgoing with respect to both sides. We then enforce the Neumann extrapolation boundary condition on each side of the boundary and propose an extrapolation boundary condition at the numerical corner in order to maintain stability for the whole numerical scheme.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.