Julia Sets, Jordan Curves and Quasi-circles

IF 0.6 4区 数学 Q3 MATHEMATICS
Norbert Steinmetz
{"title":"Julia Sets, Jordan Curves and Quasi-circles","authors":"Norbert Steinmetz","doi":"10.1007/s40315-023-00512-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the classification of rational functions whose Julia sets are Jordan arcs or curves, which started in (Carleson and Gamelin in Complex dynamics, Springer, Berlin, 1993; Steinmetz in Math Ann 307:531–541, 1997), will be completed. The method of proof is based on two <i>quasi-conformal surgery procedures</i>, which enables shifting the critical points in simply connected (super-)attracting and parabolic basins into a single critical point of highest possible multiplicity.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"7 ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-023-00512-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the classification of rational functions whose Julia sets are Jordan arcs or curves, which started in (Carleson and Gamelin in Complex dynamics, Springer, Berlin, 1993; Steinmetz in Math Ann 307:531–541, 1997), will be completed. The method of proof is based on two quasi-conformal surgery procedures, which enables shifting the critical points in simply connected (super-)attracting and parabolic basins into a single critical point of highest possible multiplicity.

茱莉亚集,乔丹曲线和准圆
本文从Carleson和Gamelin In Complex dynamics, Springer, Berlin, 1993开始,讨论Julia集为Jordan弧或曲线的有理函数的分类;Steinmetz in Math Ann 307:531-541, 1997),将完成。证明方法是基于两个准适形手术程序,这使得在单连通(超)吸引和抛物面盆地的临界点转移到一个最高可能的多重的单一临界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信