The Sharp Distortion Estimate Concerning Julia’s Lemma

IF 0.6 4区 数学 Q3 MATHEMATICS
Shota Hoshinaga, Hiroshi Yanagihara
{"title":"The Sharp Distortion Estimate Concerning Julia’s Lemma","authors":"Shota Hoshinaga, Hiroshi Yanagihara","doi":"10.1007/s40315-023-00505-4","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(\\alpha &gt; 0\\)</span>, let <span>\\(J_\\alpha \\)</span> be the class of all analytic functions <i>f</i> in the unit disk <span>\\({\\mathbb {D}}: = \\{ z \\in {\\mathbb {C}}: |z| &lt; 1 \\}\\)</span> satisfying <span>\\(f({\\mathbb {D}}) \\subset {\\mathbb {D}}\\)</span> with the the angular derivative </p><span>$$\\begin{aligned} \\angle \\lim _{z \\rightarrow 1} \\frac{f(z)-1}{z-1} = \\alpha . \\end{aligned}$$</span><p>For <span>\\(a,z\\in \\mathbb {D}\\)</span>, let </p><span>$$\\begin{aligned} k(z) = \\frac{|1-z|^2}{1-|z|^2}\\quad \\text {and}\\quad \\sigma _a(z) = \\frac{1-\\overline{a}}{1-a} \\frac{z-a}{1-\\overline{a}z}. \\end{aligned}$$</span><p>Let <span>\\(z_0 \\in {\\mathbb {D}}\\)</span> be fixed. For <span>\\(f \\in J_\\alpha \\)</span>, we obtain the sharp estimate </p><span>$$\\begin{aligned} |f'(z_0)| \\le \\frac{4 \\alpha k(z_0)^2}{(\\alpha k(z_0)+1)^2 |1-z_0|^2} \\qquad \\text {when }\\alpha k(z_0) \\le 1, \\end{aligned}$$</span><p>with equality if and only if <span>\\(f = \\sigma _{w_0}^{-1} \\circ \\sigma _{z_0}\\)</span>. Here <span>\\(w_0 = (1-\\alpha k(z_0))/(\\alpha k(z_0) +1)\\)</span>. In case of <span>\\(\\alpha k(z_0) &gt; 1\\)</span> we derive the estimate <span>\\(|f'(z_0)| \\le k(z_0)/|1-z_0|^2\\)</span>. It is also sharp, however in contrast to the former case, there are no extremal functions in <span>\\(J_\\alpha \\)</span>. The lack of extremal functions is caused by the fact that <span>\\(J_\\alpha \\)</span> is not closed in the topology of local uniform convergence in <span>\\({\\mathbb {D}}\\)</span>. Thus we consider the closure <span>\\(\\bar{J}_\\alpha \\)</span> of <span>\\(J_\\alpha \\)</span> and study <span>\\(\\bar{V}_1(z_0, \\alpha ):= \\{ f'(z_0): f \\in \\bar{J}_\\alpha \\}\\)</span> which is the variability region of <span>\\(f'(z_0)\\)</span> when <i>f</i> ranges over <span>\\(\\bar{J}_\\alpha \\)</span>. We shall show that <span>\\(\\partial \\bar{V}_1(z_0, \\alpha )\\)</span> is a simple closed curve and <span>\\(\\bar{V}_1(z_0, \\alpha )\\)</span> is a convex and closed Jordan domain enclosed by <span>\\(\\partial \\bar{V}_1(z_0, \\alpha )\\)</span>. Moreover, we shall give a parametric representation of <span>\\(\\partial \\bar{V}_1(z_0, \\alpha )\\)</span> and determine all extremal functions.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"335 ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-023-00505-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For \(\alpha > 0\), let \(J_\alpha \) be the class of all analytic functions f in the unit disk \({\mathbb {D}}: = \{ z \in {\mathbb {C}}: |z| < 1 \}\) satisfying \(f({\mathbb {D}}) \subset {\mathbb {D}}\) with the the angular derivative

$$\begin{aligned} \angle \lim _{z \rightarrow 1} \frac{f(z)-1}{z-1} = \alpha . \end{aligned}$$

For \(a,z\in \mathbb {D}\), let

$$\begin{aligned} k(z) = \frac{|1-z|^2}{1-|z|^2}\quad \text {and}\quad \sigma _a(z) = \frac{1-\overline{a}}{1-a} \frac{z-a}{1-\overline{a}z}. \end{aligned}$$

Let \(z_0 \in {\mathbb {D}}\) be fixed. For \(f \in J_\alpha \), we obtain the sharp estimate

$$\begin{aligned} |f'(z_0)| \le \frac{4 \alpha k(z_0)^2}{(\alpha k(z_0)+1)^2 |1-z_0|^2} \qquad \text {when }\alpha k(z_0) \le 1, \end{aligned}$$

with equality if and only if \(f = \sigma _{w_0}^{-1} \circ \sigma _{z_0}\). Here \(w_0 = (1-\alpha k(z_0))/(\alpha k(z_0) +1)\). In case of \(\alpha k(z_0) > 1\) we derive the estimate \(|f'(z_0)| \le k(z_0)/|1-z_0|^2\). It is also sharp, however in contrast to the former case, there are no extremal functions in \(J_\alpha \). The lack of extremal functions is caused by the fact that \(J_\alpha \) is not closed in the topology of local uniform convergence in \({\mathbb {D}}\). Thus we consider the closure \(\bar{J}_\alpha \) of \(J_\alpha \) and study \(\bar{V}_1(z_0, \alpha ):= \{ f'(z_0): f \in \bar{J}_\alpha \}\) which is the variability region of \(f'(z_0)\) when f ranges over \(\bar{J}_\alpha \). We shall show that \(\partial \bar{V}_1(z_0, \alpha )\) is a simple closed curve and \(\bar{V}_1(z_0, \alpha )\) is a convex and closed Jordan domain enclosed by \(\partial \bar{V}_1(z_0, \alpha )\). Moreover, we shall give a parametric representation of \(\partial \bar{V}_1(z_0, \alpha )\) and determine all extremal functions.

Abstract Image

关于茱莉亚引理的急剧失真估计
对于\(\alpha > 0\),设\(J_\alpha \)为单位圆盘\({\mathbb {D}}: = \{ z \in {\mathbb {C}}: |z| < 1 \}\)中满足\(f({\mathbb {D}}) \subset {\mathbb {D}}\)且具有角导数的所有解析函数f的类$$\begin{aligned} \angle \lim _{z \rightarrow 1} \frac{f(z)-1}{z-1} = \alpha . \end{aligned}$$对于\(a,z\in \mathbb {D}\),设$$\begin{aligned} k(z) = \frac{|1-z|^2}{1-|z|^2}\quad \text {and}\quad \sigma _a(z) = \frac{1-\overline{a}}{1-a} \frac{z-a}{1-\overline{a}z}. \end{aligned}$$设\(z_0 \in {\mathbb {D}}\)为固定。对于\(f \in J_\alpha \),我们得到了当且仅当\(f = \sigma _{w_0}^{-1} \circ \sigma _{z_0}\)时相等的锐估计$$\begin{aligned} |f'(z_0)| \le \frac{4 \alpha k(z_0)^2}{(\alpha k(z_0)+1)^2 |1-z_0|^2} \qquad \text {when }\alpha k(z_0) \le 1, \end{aligned}$$。这里\(w_0 = (1-\alpha k(z_0))/(\alpha k(z_0) +1)\)。在\(\alpha k(z_0) > 1\)的情况下,我们得到估计\(|f'(z_0)| \le k(z_0)/|1-z_0|^2\)。它也很尖锐,但是与前一种情况相反,\(J_\alpha \)中没有极值函数。极值函数的缺失是由于\(J_\alpha \)在\({\mathbb {D}}\)的局部一致收敛拓扑中不闭合造成的。因此,我们考虑\(J_\alpha \)的闭包\(\bar{J}_\alpha \),并研究\(\bar{V}_1(z_0, \alpha ):= \{ f'(z_0): f \in \bar{J}_\alpha \}\),当f大于\(\bar{J}_\alpha \)时,是\(f'(z_0)\)的变异性区域。我们将证明\(\partial \bar{V}_1(z_0, \alpha )\)是一条简单的封闭曲线,而\(\bar{V}_1(z_0, \alpha )\)是一个由\(\partial \bar{V}_1(z_0, \alpha )\)包围的凸封闭Jordan域。此外,我们将给出\(\partial \bar{V}_1(z_0, \alpha )\)的参数表示,并确定所有的极值函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信