On Optimal Cardinal Interpolation

IF 0.8 Q3 STATISTICS & PROBABILITY
B. Levit
{"title":"On Optimal Cardinal Interpolation","authors":"B. Levit","doi":"10.3103/s1066530718040014","DOIUrl":null,"url":null,"abstract":"For the Hardy classes of functions analytic in the strip around real axis of a size 2<i>β</i>, an optimal method of cardinal interpolation has been proposed within the framework of Optimal Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal according to the criteria of Nonparametric Regression and Optimal Design.In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect, in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other. In the limiting case <i>β</i> → ∞, the optimal interpolant converges to the well-knownNyquist–Shannon cardinal series.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"294 ","pages":"245-267"},"PeriodicalIF":0.8000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530718040014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

For the Hardy classes of functions analytic in the strip around real axis of a size 2β, an optimal method of cardinal interpolation has been proposed within the framework of Optimal Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal according to the criteria of Nonparametric Regression and Optimal Design.In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect, in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other. In the limiting case β → ∞, the optimal interpolant converges to the well-knownNyquist–Shannon cardinal series.
关于最优基数插值
对于大小为2β的实轴上的Hardy类解析函数,在最优恢复的框架内提出了基数插值的最优方法[12]。该方法基于Jacobi椭圆函数,根据非参数回归和优化设计准则证明是最优的。在随机非渐近设置中,对于远离0的所有噪声电平,最优插值的最大均方误差被显式地评估。干涉效应起着关键的作用,其中内插器的偏置和方差所表现出的振荡相互抵消。在极限情况β→∞时,最优插值收敛于著名的nyquist - shannon基数级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信