On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson’s Chi-Square Type Tests

IF 0.8 Q3 STATISTICS & PROBABILITY
M. V. Boldin, M. N. Petriev
{"title":"On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson’s Chi-Square Type Tests","authors":"M. V. Boldin, M. N. Petriev","doi":"10.3103/s1066530718040038","DOIUrl":null,"url":null,"abstract":"We consider a stationary linear AR(<i>p</i>) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is <i>γn</i><sup>−1/2</sup> with an unknown <i>γ</i>, <i>n</i> is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is <i>n</i><sup>1/2</sup>-consistent uniformly in <i>γ</i> ≤ Γ &lt; ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to <i>γ</i> in a neighborhood of <i>γ</i> = 0.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"20 1","pages":"294-311"},"PeriodicalIF":0.8000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530718040038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

Abstract

We consider a stationary linear AR(p) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is γn−1/2 with an unknown γ, n is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is n1/2-consistent uniformly in γ ≤ Γ < ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to γ in a neighborhood of γ = 0.
离群值自回归残差的经验分布函数及Pearson卡方检验
我们考虑一个平稳的线性AR(p)模型,其观测值受到严重误差(异常值)的影响。异常值的分布是未知的和任意的,其强度为γn - 1/2, γ未知,n为样本量。自回归参数是未知的,它们由任意在γ≤Γ <中一致为n1/2相合的估计量估计;∞。利用估计自回归的残差,我们构造了一种经验分布函数(e.d.f.),它是自回归创新的(不可接近的)e.d.f.的对应物。我们得到了这个e.d.f的随机展开式,这使我们能够构造一个皮尔逊卡方检验来检验关于创新分布的假设。我们在γ = 0的邻域内关于γ的极限水平的一致等连续性方面建立了这个检验的定性稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信