Density Estimation for RWRE

IF 0.8 Q3 STATISTICS & PROBABILITY
A. Havet, M. Lerasle, É. Moulines
{"title":"Density Estimation for RWRE","authors":"A. Havet, M. Lerasle, É. Moulines","doi":"10.3103/s1066530719010022","DOIUrl":null,"url":null,"abstract":"We consider the problem of nonparametric density estimation of a random environment from the observation of a single trajectory of a random walk in this environment. We build several density estimators using the beta-moments of this distribution. Then we apply the Goldenschluger-Lepski method to select an estimator satisfying an oracle type inequality. We obtain non-asymptotic bounds for the supremum norm of these estimators that hold when the RWRE is recurrent or transient to the right. A simulation study supports our theoretical findings.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530719010022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of nonparametric density estimation of a random environment from the observation of a single trajectory of a random walk in this environment. We build several density estimators using the beta-moments of this distribution. Then we apply the Goldenschluger-Lepski method to select an estimator satisfying an oracle type inequality. We obtain non-asymptotic bounds for the supremum norm of these estimators that hold when the RWRE is recurrent or transient to the right. A simulation study supports our theoretical findings.
RWRE的密度估计
我们考虑了一个随机环境的非参数密度估计问题,该问题是通过观察随机行走的单个轨迹得到的。我们利用这个分布的矩建立了几个密度估计器。然后应用Goldenschluger-Lepski方法选择一个满足oracle型不等式的估计量。我们得到了当RWRE向右递归或暂态时,这些估计量的最大范数的非渐近界。一项模拟研究支持了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信